28 research outputs found

    Phenotypic plasticity of common wasps in an industrially polluted environment in southwestern Finland

    Get PDF
    Insects vary in the degree of their adaptability to environmental contamination. Determining the responses with phenotypic plasticity in ecologically important species in polluted environments will ease further conservation and control actions. Here, we investigated morphological characteristics such as body size, body mass, and color of the common wasp Vespula vulgaris in an industrially polluted environment, considering different levels of metal pollution, and we studied the localization of contaminants in the guts of wasps. We revealed some differences in morphological characteristics and melanization of wasps collected in habitats with high, moderate, and low levels of pollution. The results indicated that V. vulgaris from highly polluted environments had reduced melanin pigmentation on the face but increased melanin pigmentation on the 2nd tergite of the abdomen. In addition, with transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX), we found metal particles from the midgut of wasps originating from the polluted environment. Most of the particles were encapsulated with melanin pigment. This finding confirmed that in wasps, ingested metal particles are accumulated in guts and covered by melanin layers. Our data suggest that wasps can tolerate metal contamination but respond phenotypically with modification of their size, coloration, and probably with the directions of the melanin investments (immunity or coloration). Thus, in industrially polluted areas, wasps might probably survive by engaging phenotypic plasticity with no significant or visible impact on the population.</p

    Poly[[μ-aqua-aqua­[μ4-ethyl (dichloro­methyl­ene)diphospho­nato]sesqui­calcium(II)] acetone hemisolvate 4.5-hydrate]

    Get PDF
    The title compound, {[Ca1.5(C3H5Cl2O6P2)(H2O)2]·0.5CH3COCH3·4.5H2O}n, has a two-dimensional polymeric structure. The asymmetric unit contains two crystallographically independent Ca2+ cations connected by a chelating and bridging ethyl (dichloro­methyl­ene)diphos­pho­n­ate(3−) ligand and an aqua ligand. One of the Ca atoms, lying on a centre of symmetry, has a slightly distorted octa­hedral geometry, while the other Ca atom is seven-coordinated in a distorted monocapped trigonal-prismatic geometry. The polymeric layers are further connected by extensive O—H⋯O hydrogen bonding into a three-dimensional supra­molecular network. The acetone solvent mol­ecule and one uncoordin­ated water mol­ecule are located on twofold rotation axes

    Systematic study of the physicochemical properties of a homologous series of aminobisphosphonates

    Get PDF
    ABSTRACT: Aminobisphosphonates, e.g., alendronate and neridronate, are a well known class of molecules used as drugs for various bone diseases. Although these molecules have been available for decades, a detailed understanding of their most important physicochemical properties under comparable conditions is lacking. In this study, ten aminobisphosphonates, H2N(CH2)nC(OH)[P(O)(OH)2]2, in which n = 2-5, 7-11 and 15 have been synthesized. Their aqueous solubility as a function of temperature and pH, pKa-values, thermal stability, IR absorptions, and NMR spectral data for both liquid (1H, 13C, 31P-NMR) and solid state (13C, 15N and 31P-CPMAS NMR) were determined.Peer reviewe

    Exploring the Biochemical Foundations of a Successful GLUT1-Targeting Strategy to BNCT: Chemical Synthesis and In Vitro Evaluation of the Entire Positional Isomer Library of ortho-Carboranylmethyl-Bearing Glucoconjugates

    Get PDF
    Boron neutron capture therapy (BNCT) is a noninvasive binary therapeutic modality applicable to the treatment of cancers. While BNCT offers a tumor-targeting selectivity that is difficult to match by other means, the last obstacles preventing the full harness of this potential come in the form of the suboptimal boron delivery strategies presently used in the clinics. To address these challenges, we have developed delivery agents that target the glucose transporter GLUT1. Here, we present the chemical synthesis of a number of ortho-carboranylmethyl-substituted glucoconjugates and the biological assessment of all positional isomers. Altogether, the study provides protocols for the synthesis and structural characterization of such glucoconjugates and insights into their essential properties, for example, cytotoxicity, GLUT1-affinity, metabolism, and boron delivery capacity. In addition to solidifying the biochemical foundations of a successful GLUT1-targeting approach to BNCT, we identify the most promising modification sites in d-glucose, which are critical in order to further develop this strategy toward clinical use.Peer reviewe

    Addressing the Biochemical Foundations of a Glucose-Based "Trojan Horse"-Strategy to Boron Neutron Capture Therapy: From Chemical Synthesis to In Vitro Assessment

    Get PDF
    Boron neutron capture therapy (BNCT) for cancer is on the rise worldwide due to recent developments of in-hospital neutron accelerators which are expected to revolutionize patient treatments. There is an urgent need for improved boron delivery agents, and herein we have focused on studying the biochemical foundations upon which a successful GLUT1-targeting strategy to BNCT could be based. By combining synthesis and molecular modeling with affinity and cytotoxicity studies, we unravel the mechanisms behind the considerable potential of appropriately designed glucoconjugates as boron delivery agents for BNCT. In addition to addressing the biochemical premises of the approach in detail, we report on a hit glucoconjugate which displays good cytocompatibility, aqueous solubility, high transporter affinity, and, crucially, an exceptional boron delivery capacity in the in vitro assessment thereby pointing toward the significant potential embedded in this approach

    Removal and recovery of metal ions from acidic multi-metal mine water using waste digested activated sludge as biosorbent

    Get PDF
    Highly acidic and toxic metal ion containing acid rock drainage (ARD) can cause severe environmental problems and endanger aquatic life. However, due to the high metal ion containing ARD is an auspicious source of metals for recovery and reuse. The feasibility of using waste digested activated sludge (WDAS) as a biosorbent for selective metal recovery from a highly complex mine water characterized by low pH (2.6), high sulfate concentration (80.8 g L−1) and a multitude of metals (Co, Cr, Cu, Fe, Mn, Ni, Th, U, V, Y, and Zn) at concentrations from few mg L−1 to several g L−1 was investigated. The effect of pH (2.0–10.0) and WDAS concentration (3.8–22.2 g L−1) on metal ion removal and the effect of several recovery solutions and their concentrations on metal recovery were explored in batch experiments. Metal removal was influenced by pH and WDAS concentration. A strong selectivity was observed in the recovery step employing 1 M Na2CO3 solution. The combination of a one-step removal and a two-step recovery approach enabled recovery of U (108.0 ± 6.6%), Cu (39.2 ± 2.5%), and Th (53.7 ± 7.7%) due to formation of strong carbonate complexes increasing the purity of U and Cu up to tenfold compared to the mine water. The results revealed that careful adaption of pH, WDAS concentration, and number of steps of the process according to the combination of metals present in solution is of great importance.publishedVersionPeer reviewe

    Characterization of the glyoxalase 1 gene TcGLX1 in the metal hyperaccumulator plant Thlaspi caerulescens

    No full text
    Stress tolerance is currently one of the major research topics in plant biology because of the challenges posed by changing climate and increasing demand to grow crop plants in marginal soils. Increased Zn tolerance and accumulation has been reported in tobacco expressing the glyoxalase 1-encoding gene from Brassica juncea. Previous studies in our laboratory showed some Zn tolerance-correlated differences in the levels of glyoxalase 1-like protein among accessions of Zn hyperaccumulator Thlaspi caerulescens. We have now isolated the corresponding gene (named here TcGLX1), including ca. 570 bp of core and proximal promoter region. The predicted protein contains three glyoxalase 1 motifs and several putative sites for post-translational modification. In silico analysis predicted a number of cis-acting elements related to stress. The expression of TcGLX1 was not responsive to Zn. There was no correlation between the levels of TcGLX1 expression and the degrees of Zn tolerance or accumulation among T. caerulescens accessions nor was there co-segregation of TcGLX1 expression with Zn tolerance or Zn accumulation among F3 lines derived from crosses between plants from accessions with contrasting phenotypes for these properties. No phenotype was observed in an A. thaliana T-DNA insertion line for the closest A. thaliana homolog of TcGLX1, ATGLX1. These results suggest that glyoxalase 1 or at least the particular isoform studied here is not a major determinant of Zn tolerance in the Zn hyperaccumulator plant T. caerulescens. In addition, ATGLX1 is not essential for normal Zn tolerance in the non-tolerant, non-accumulator plant A. thaliana. Possible explanations for the apparent discrepancy between this and previous studies are discussed. © 2011 Springer-Verlag

    Median values, respected p-values and ranges for whole blood metal ion concentrations in patients with unilateral total hip replacement (n = 69) or hip resurfacing (n = 13) patients.

    No full text
    <p>Median values, respected p-values and ranges for whole blood metal ion concentrations in patients with unilateral total hip replacement (n = 69) or hip resurfacing (n = 13) patients.</p
    corecore