1,918 research outputs found

    Probability distribution functions in turbulent convection

    Get PDF
    Results of an extensive investigation of probability distribution functions (pdfs) for Rayleigh-Benard convection, in hard turbulence regime, are presented. It is shown that the pdfs exhibit a high degree of internal universality. In certain cases this universality is established within two Kolmogorov scales of a boundary. A discussion of the factors leading to the universality is presented

    Problems in fluid dynamics

    Get PDF
    A scheme was developed for the parametric differentiation and integration of gas dynamics equations. A numerical integration of the gas dynamics equations is necessarily performed for a specific set of parameter values. The linear variational equations are obtained by differentiating the exact equations with respect to each of the relevant parameters. The resulting matrix of flow quantities is referred to as the Jacobi matrix. The subsequent procedure is then straightforward. The method was tested for two dimensional supersonic flow past an airfoil, with airfoil thickness, camber, and angle of attack varied. This approach has great potential value for rapidly assessing the effect of design changes. The other focus of the work was on problems in fluid stability, bifurcations, and turbulence

    Approximate and exact numerical integration of the gas dynamic equations

    Get PDF
    A highly accurate approximation and a rapidly convergent numerical procedure are developed for two dimensional steady supersonic flow over an airfoil. Examples are given for a symmetric airfoil over a range of Mach numbers. Several interesting features are found in the calculation of the tail shock and the flow behind the airfoil

    Piecewise continuous distribution function method: Fluid equations and wave disturbances at stratified gas

    Full text link
    Wave disturbances of a stratified gas are studied. The description is built on a basis of the Bhatnagar -- Gross -- Krook (BGK) kinetic equation which is reduced down the level of fluid mechanics. The double momenta set is introduced inside a scheme of iterations of the equations operators, dividing the velocity space along and opposite gravity field direction. At both half-spaces the local equilibrium is supposed. As the result, the momenta system is derived. It reproduce Navier-Stokes and Barnett equations at the first and second order in high collision frequencies. The homogeneous background limit gives the known results obtained by direct kinetics applications by Loyalka and Cheng as the recent higher momentum fluid mechanics results of Chen, Rao and Spiegel. The ground state declines from exponential at the Knudsen regime. The WKB solutions for ultrasound in exponentially stratified medium are constructed in explicit form, evaluated and plotted.Comment: 20 pages, 7 figures, 14 ISNA conference, 199

    A Modular Regularized Variational Multiscale Proper Orthogonal Decomposition for Incompressible Flows

    Full text link
    In this paper, we propose, analyze and test a post-processing implementation of a projection-based variational multiscale (VMS) method with proper orthogonal decomposition (POD) for the incompressible Navier-Stokes equations. The projection-based VMS stabilization is added as a separate post-processing step to the standard POD approximation, and since the stabilization step is completely decoupled, the method can easily be incorporated into existing codes, and stabilization parameters can be tuned independent from the time evolution step. We present a theoretical analysis of the method, and give results for several numerical tests on benchmark problems which both illustrate the theory and show the proposed method's effectiveness

    Extended Heat-Fluctuation Theorems for a System with Deterministic and Stochastic Forces

    Full text link
    Heat fluctuations over a time \tau in a non-equilibrium stationary state and in a transient state are studied for a simple system with deterministic and stochastic components: a Brownian particle dragged through a fluid by a harmonic potential which is moved with constant velocity. Using a Langevin equation, we find the exact Fourier transform of the distribution of these fluctuations for all \tau. By a saddle-point method we obtain analytical results for the inverse Fourier transform, which, for not too small \tau, agree very well with numerical results from a sampling method as well as from the fast Fourier transform algorithm. Due to the interaction of the deterministic part of the motion of the particle in the mechanical potential with the stochastic part of the motion caused by the fluid, the conventional heat fluctuation theorem is, for infinite and for finite \tau, replaced by an extended fluctuation theorem that differs noticeably and measurably from it. In particular, for large fluctuations, the ratio of the probability for absorption of heat (by the particle from the fluid) to the probability to supply heat (by the particle to the fluid) is much larger here than in the conventional fluctuation theorem.Comment: 23 pages, 6 figures. Figures are now in color, Eq. (67) was corrected and a footnote was added on the d-dimensional cas

    Turbulent spectrum of the Earth's ozone field

    Full text link
    The Total Ozone Mapping Spectrometer (TOMS) database is subjected to an analysis in terms of the Karhunen-Loeve (KL) empirical eigenfunctions. The concentration variance spectrum is transformed into a wavenumber spectrum, Ec(k)% E_c(k). In terms of wavenumber Ec(k)E_c(k) is shown to be O(k2/3)O(k^{-2/3}) in the inverse cascade regime, O(k2)O(k^{-2}) in the enstrophy cascade regime with the spectral {\it knee} at the wavenumber of barotropic instability.The spectrum is related to known geophysical phenomena and shown to be consistent with physical dimensional reasoning for the problem. The appropriate Reynolds number for the phenomena is Re1010Re\approx 10^{10}.Comment: RevTeX file, 4 pages, 4 postscript figures available upon request from Richard Everson <[email protected]

    Low-dimensional dynamical system model for observed coherent structures in ocean satellite data

    Get PDF
    The dynamics of coherent structures present in real-world environmental data is analyzed. The method developed in this Paper combines the power of the Proper Orthogonal Decomposition (POD) technique to identify these coherent structures in experimental data sets, and its optimality in providing Galerkin basis for projecting and reducing complex dynamical models. The POD basis used is the one obtained from the experimental data. We apply the procedure to analyze coherent structures in an oceanic setting, the ones arising from instabilities of the Algerian current, in the western Mediterranean Sea. Data are from satellite altimetry providing Sea Surface Height, and the model is a two-layer quasigeostrophic system. A four-dimensional dynamical system is obtained that correctly describe the observed coherent structures (moving eddies). Finally, a bifurcation analysis is performed on the reduced model.Comment: 23 pages, 7 figure

    Density Matrix Renormalization for Model Reduction in Nonlinear Dynamics

    Full text link
    We present a novel approach for model reduction of nonlinear dynamical systems based on proper orthogonal decomposition (POD). Our method, derived from Density Matrix Renormalization Group (DMRG), provides a significant reduction in computational effort for the calculation of the reduced system, compared to a POD. The efficiency of the algorithm is tested on the one dimensional Burgers equations and a one dimensional equation of the Fisher type as nonlinear model systems.Comment: 12 pages, 12 figure
    corecore