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Abhsrract

Tun=-dimensional steady supersonic flow over an airfoil is
considereds A highly accurats approximation and a new,
rapidly convergent num=rical procednre partly based on it
are developed. Exanmples for a symmetric airfoil over a
range of Mach nunbars are givan., Several interesting
features are found in +h? calculation of the tail shock and

“he flow behind the airfoil.
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1. Introduc+ion

This paper contains an investigation of two-dimensional
sup=arsonic gas dynamic flows, Althqhqh the final step in
our investigation is numerical, we use methods which
incorporate our analytical and physical kncw 2dge of such
flows. The approach is well-suitad both for numerical
integration and for <he interp:etation.of the resulting flow
phenorena, In the present investigation, several new or
li<tle-knecwn effects corcernirg the tail shock and flow
Lehind a two-dimensional airfoil emerge, Discusszion of
these is reserved for éection 6, A poeliminary version of

this approach ftor the case of ons-dirensional unsteady flow

has already bc=n repor<ed (Sirovich & Chong 1980, Chong &
Sirovich 1980),
For problems in which the shock waves are weak,

variaticns in entropy and one Riemann invariant are

41

~hird~order efrccts, and th2 solu<ion is approxima%ely given
by a simple wave, or Prandtl-deyer éxpanaion (Friedrichs
1948; see Lighthill 1960 for correc+ions and extensions).,

In fact t£he nuwerical change in the Eismann invariant is
significantly =maller than that in entropy (section 3).

This suggests zhat a larysr class of flows can be viawed as
the interaction of a simple wave and an entropy variation,
which in turn suggests that streamlines and princibal
charactericstics be used as coordinates. Adamson (1968) has

used a similar coordinate sys<em in another con<ext,
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The usefulness of =his transformation is also related <o

shock cxpansion theorv, a method for calculating surfacs

Z-’J

pressures whicn goas hack %o sta2in (1931). Tt depends
upon the fact that reflections of the outgoing waves on the
principal characteyristics are weak and tend to cancel each
othzr (Hayes & Probs+<ein 1966, dahony 1955). Shock
sxpaunsion theoiy has been extended %o include computation of
the full flow £ield (Enqers, Syvertson & Kraus 1953, deyer
1957), Jones (1963), in another approach, bridges shock
expansinn *heory and simple wave *heory by considering
slowly varying perturbations of the latter., Jur approximat=
solution iz closely related to shock expansion theory.

e use ~he approximite solu<ion as +whe first step of an
itzrative pumerical method to compute the exact solution,
Thiz procedure is qui<e dis*inct from current numerical
aczhode for +his type of problem. For the most part such
approaches apply a variety of differencing schemes to the
gas dypawic equations in their standard form (for a
comparison of several methods sez Tayvlor, Ndefo & Masson
1¢72)., Imgplemzntation is then relatively simple, but mav
reaguirsz many mash points and/or be subiject to restrictive
stability crit=ria. Methods which do nét explicitly £it
shock vwaves also tend to have difficulty with thenm,
producing oscilla“ions near or diffusging the discontinuity.
A more powerful method which fits the shock wave explicitly

is the RYL® method (Babenko, =t al. 1966, Holt 1979), This

P
th

a rather unwieldy method, which is actually intended for
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morw complicated problams *han tha* dealt with here. The

method of characteristics (see Li=pmann & Roshko 1957, ch.

12), %o which our methnd is more closely related, has aliso
becn found iv practice to be unwieldy and time-consuning.

Corparisons. of computation time are difticult to make,
hecause of the many variablss involved, but the procedure we
prasent should compare favorably with others available. The
approximate sclution is probably suffiéiently accura*e in
many instances, and evan in the worst cases we have
calcula+-ed only abous +three or four iterations are requirsd
to achiz2ve an accuracy of one percent throughout the flow

fieldo

Iro

10

Forrulation of rroblam

¥e consider the si+tuation shown in figure 1, in which a
t uniform flow of Mach number M,>1 is incident upon a

+*wo-dimensional symmetric airfoil. I+t is assumed that there

3

3

' are attached shocks at the leading and trailing edges, and
that <he flow remaing supersonic everywhere, wse discuss the

flow in zhe upper half plane ahead of +he +*ail shock. The

tail shock and the flow behind it are treated in appendix B,
If the airfoil is not symmstric, the flow fields above and
below i4 can each be compu=ed by the methods descfibed here,
independently, up to the appearance of the tail shocks.

The coordinates x and y are scaled by the airfoil lenath;
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the pressure p and <he da2nsity p by their upstreanm valuss p,

and pg; the velocixy (u,v) = (q cos €, q sin 6) and the

sound spaed a by the wngtrzam sound speed ag; and <he

entropry s, which is set tc zero upstream, by the gas

t conswan* E, K2 consider a poarfect gas with constant
specific heats ¢, = B/ (#-1) and c, =¥c,, tor which the
aquation of stite is n = p*axp[(?-1)s] and the sound speed
is given bty a? = p/p. The calculations here were done for

¥ = 1.4, Modirications for the case of a gas with a general

{7

guation of s%ate are ouvlined in Appendix A.

A

Thz equaticns of inviscid two~:limensional steady flow ar:z
convanizntly writsen ia characteris*ic form with the entropy
s, thc flow anyle 8, and th2 Mach anglz p = sin=? (1/4)
(where *=q/a is the local fach nunmnker) as dependent

varialrles, All other physical quaniities can be obtainad

E from <hkass and [ernonlli's equaxion

; -1 ¥ -1

; a2 + = q? = 1 + «— Hz, {n
: 2 2

s

The =auations of motion are (Meyer 1969, p. 273)

ds = 9 on strzamlines: — = tan 6, (2)

fuk
>3

f 1 dy :
i d(e+p(p)) = — sin 2p ds on Ct+: — = tan(8+p), (3) )
2¥ dx

. [t
s m B 3 e e e ———— e i o
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i d(e-E(p)) = - = sin 2j) ds on C=i =— = tan(e-p), (%)
1 2% dx’
: whers E(p) iz given by
! P(p) = J} tdn‘l(VR tan p) = j. =(¢+1)/ (¥-1)

The streamlines and the C* and ¢, charasteristics ars shown

in figure 1, The quantities rt = 8+P (p) are called ths
} Ricwann invariants. Another usecful form of (3) and (4) 1is
E‘ '
1 dp s dy
d¢ & = sinp 2p =— =0 on C7: — = tan(eip). (5)

2% p Cdx
The appronriate boundary condition at the airfoil is
tan € = £¥(x) on y = £(x). (6)

In addi+ion, +the solntion f£ar away from the airfoil -» + 00
, .

il

must approach the upstream conditions 8 O, p = po, and
s = 0. The jumps in €6, p, and s across the shocks are
governed by the Rankine-Hugonict conditions (Licpmann &

Roshko 1957, p. 85). If we denote the shock angle by ul and

flow quantitie¢s on either side of the shock by subscripts 1

R il

and 2, these condi*tions can be writ+en

1 (M2=1) tanz (m-€¢,) - 1
tan(e,-&,) = ’ (7)
Tan (y-6,) $+1 -1
(1+-—-Mf)+(1+——-ﬂf)tan2(qﬂe‘)
2 2
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¥-1
1 ¢ = 2
A,\? 2¢
- = (1+2) ' (3)
dy \‘4'1
1 4 = 7
2
¥-1
1 4 = 2
1 2¥
Sp=3; = ——[log (1+7) + ¥ loyg 1, (9)
*-1 e+ 1
1 &4 == 2
2%
where the shock strength z = (p,-v,)/p, is given by
A
z = -—[ﬂ$sin2(n—e,) - 11 (1))
e+

Equation (?) do2terwines the jump in p, since a< can be

T e R

wrizten as a funcwion of M or p using (1.

3. A new coordinate svstemn

;e

3Cross a shock wave the entropy and one of the Riemann

invariants (r— for ﬂ nositive, rt for q-negative) changza
only a* #hird order in “he shock streng“h., This can be

shown by Taylor series expansions (or see Couraunt &

Friedrichs 1943, Se2ction 138),., In fiqgure 2 the jumps in s
and r— are rlotted on a2 logari¢amic scale aygainst the
dctlection angle €, for various Mach nunbers #,. #Without

loss of gepsrality we can set €,=0 and take &,, and henca 1,
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posi=ive. Thk2 shock s%rengsh is 9¢ the same order as <ha
deflection angle, so for swall 8,, the curves approach
straiagh% lings of slone three.- For larqger valuecs of €,, <hea
ratas of incraase of As and Ar— tend +o drop off somewha=z,
Fer a weak shock wave As and Ar— can be considered
negligible conmparzed %o, say, Art, whicﬁ is a ft:st-ordér
quantity. These valunes also nrovide estimates for <he
variation in s and r— throughout the flow field. This is
obvious in =he case of s, since i< is constant aon
streamlines, 1In fact the sawme is very nearly true of r= for
a wide ranage of conditions. This will be seen in ccnnection
wi<h. ehock =2xpansion thaorv later on, Therefgre, for a weak
shock wave s and r©— aras nearly cons*ant everywhere, and the
soluticn is approximately given by a simple wave on the C*,
or principal, characteristics (se2 section 4).

) second feature of interest in fiqure 2 is that for any

~—

given Mach number and deflection angle +he jump in r— i3
significantly smaller than that in s. At M| = 5 and
6, = D.2, for exampla, As = 0.19 while Ar= is only 0,03,
Therefore, for weak to moderate strength shock waves, the
flow in +*+he wpper half plane can be regarded as primarily an
interaction between the simple vave and an entropy
variation, with £ playing onlv a small role.

With +kis in mind we introduce a coordina+te systen (“'F)
consisting of the the streamlinecs, o = constant, and the
principal (C*) characteristics, P = constant. By

definition, o and p must catisfy
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d_ +a, tan 8 = ), P*4-Pwtan(e+p) =

i » T Ny

? since any function of & will satisfy the rfirst equation

o ‘f‘; wO ALY O
OLRIGLIAL FAGE IS Ifog
(11)

and

any func*icn of P will sa*istfy the second, two conpdizions

1 will te requirad later to fix <he transrtormations.

In the new coordinate systsm (2) becones

SP=0,
E or € = =(g), Similarly (3) and (4) becomeg . _
1 "‘;51” .
[ -w,.h‘, 1}:\5..74
1
@+ (1)), = — sin 2p s' (a)
4
2 L2 een T oy
— 1, — -y _ - — o &S
(M W OP)( 2 () — Sin 2 st (),
wharae
|
i P +pw tan(@-p) 2 g
t w = = = e
; mx-+d? tan (e-p) 1 - %tan € zan § xp
E
i The second expression for w follows from (11) and the
i functional relation
Xy qy 1 YP —xp
f Pr Py “a¥p"VaXp | TYa X4
; Using (1%) and (13), equa+ion (14) can be simpliied to
“p
(e-P(P))r = (1 - tan 8 tan Py = E4e
] P '
p
k&

(12)

Ll Uy

E la‘} i
& (_}: )P
(13)

(14)

(15)

(10)

(17)
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Siacc x Ini y are now dependen<« variablas, two additional

equations are reguired for thém. Those are fapnishel by

(11), which by (1€6) can be written as

VP = xp “an 8, Vo = %q4 tan (6+p1) . {18)
Equations (12), (13), (17), and (13) are tive equations in

fivz unknowns: €, p, =, X, anl y.

I- is rossinle =0 ¢liminaze y from the aquations

immcdiatelv tv setting YP“ ydp in (13). This -gives
0 = [cang-tan(€+p) ]— + 8y SRC2E— ~ (e+p)Psec2(6+p),
Xd‘ ) X"

which, using (17), can bs writtan

Q

) = —— 4 (p+P(p))Pcot ot (E+p)ptan(erp). (19)
X o ’

Thz firs+ arpd =hird +eras are the p deriva+tives of log Xg

aud -lou cos(€+p), recpecuively., The second term can also
be intearazed explici“ly; <he result is A loy a, where we
recall h= (¢+1)/(#-1). Therzfore (19) has as a first

in=zqgral

Xq = A(d)a=Acos (e+p), (2.)
where A{q) is an arkitrary function to he determined latsr,

Hence x can he written

of

X (4, B) = x(0,8) * { ataya-rcus(e+p) da. (21)
]
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Similariv, fzouw (198) we ge=
of
v(&ep) = y(0p) + § A(a)a=dsin (e+p)dd. (22)
(-]

S0 far @ and B have no+t been spacified Leyond saying 4 =
congstant on streamlines and p= constant on Ct
charac+-eriz+ticse. Th: boundary and shock conditiors in the
dF-nlane can b2 sinplifi~d sownewha+t by normalizing o and P
approrriataly, ¥We la2t the airfoll surface be o = 0, and
ncrralize p Ey setting p= x a% o = 0. The boundary

condi*ion (f) zhen lteconss
x{,olp) =Pv Y(‘—)IP) = f(F)l G(E),P) = tan-lf'(P)' {23)

Cn2 corvenient way of norralizing o is <o take the frons

shock angls ﬂ(“) to ba givan hy
“an ﬁ(“) = (1-d) *an n(o) t d tah jlo, (24)

whors n(O) is xnown tfrom solving =he shock condi<ions a% *he
leading =dae, and 1o i3z the upstrecam Mach angle, which the
shock anpnrnachzs far away €rom tn2 airfoil, (v2 assume that
M iz a s*ric:zly decreasing function.) The tlow field in <he
uppar half wlane thus is mapned into a firi<e region in =he
dﬁ-planc, as shown in figures 8 and 9, ’The principal
charactaris=ics hecomne var<ical lines, and the s<reamlinos
become hcrizontal lines. The front shock waps into some
curve P(q), and the rear shock inte two separate curves
Pz(x) and Fa(q). Flow variablas on szd) denote valuss just

to the 1l=zft of the rear shock, and thoss on P3@ﬂ deno«e <h2

-
e ik
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values just to the right.s The Jdiscuszsion of thesc is lafti
tc appendix B,

With the =hock angle vr’(q) a givan function, <he shock
conditinna (7)=(2) can bs iamediataly solved for e(a{,p(q)),
p(O(,p(c()), and s(q). The shock 5("” irselrs will in genazal
deprind on the rest of thz solutiaen, ho'wr:ver.

Az P= P(q) ~he condition

ey st ey ATy XA 44 ﬂ!-‘ ¥ 7{1

TV vy Vg () REPRODUCTITY OF

tan ) = = = ' ORIGISAL 1. (25 ¥ 2
dx g+ xpp'(d)

53
o
"
%
(o
T

eaziasfied. Usina (13), this can Le writ+ten

Xy * b(d)‘:? = 0 on P-‘-P(o{), (20)

wheres

=an 'V] - ran A

h{d) = P'(O() N ) . ) .
.an'.r) - zan (E+p) f}—p(d)
Subssituticn of (21) for x in (206) aives a linear inteyral
equation for A(d):
o

M0, pl)) + bla)[1 + i MO0y (T, p(=))AT] = ) (27)
whers ¢ = a—/\cos(e+§1). IJ' th2 solu<zion for 8, p, and s is
known in the o(p-plane, this equation can be solved for A(g),
and the “ransformazion back %o the physical planc compused
with (21) and (22). In qeneral however the solution in the
q"g-plane d2rends on % through (17).

Up to this poin* the aguations in dB-coordinates have
Y ]

3
DFCRPIE'Y A
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heen derived without approximation, and hencc are equivalent

to ths oariginal set (2)- (4).

h, Apnrnxirate solutions

Sinnle wave anproyximation

As merticned earlier, in a problem wiwh weak shock waves
devia*ions in 5 and = from +heilr ups*rzam values are
third-ord=r quantitizs and can ke reglected; that is, it cin
Le asznmed <hat s = ) and ©— = =P(Jl,) <«varywhare, The
solu=ion of (2)-(4) “hen iz a sianle wave, in which all
(quantitiss are constant on the principal characteristics,

which in turn ars straight lines:

+)

D

= han=if'(B), = PTU{84+P(jlo)) ., S

on C*: y = f(p) + (x-p)tan(e+p).

This aprroxima<ion is due =o Friadrichs (1948). (Friedrichs
further sirpliried the preblem by neglscting terms of thirnd
ordar and kighzr throughout the calcnla«ion.) The solu=iocn

satisfies the boundarv condition, but can satisfy only one

E of the throe conditions at the shock. However, since two
i quantizies (¢ and r-) are conservzd up <o third order across
the shock, if one condition is satisfied the other fwo will
g he catisfied up to +third order, It 1s convenient to retain
+he =hock condition on &, equation (7), which can be solved ‘
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for the sheck angle M as a functinn of e(g). Denotiny ths

shock by [X(P),Y(p)] we have then

REPROPUCTINITY OF THRE
I

Y(p) = £(p) + [X(P) -plran (sep) VHIGNAL LA 15 POOR

Y (p) /XY () = tan 7).
Eliminating Y ({ hetween these two produces a linear
p .

firs+«-order ordinary differen<ial equation for X(p), fer

whiclh an cxplicit solution is ecasily found.

Shock _zxpansion *heory

Becanse simple wave theory *axes £ and r— cons=an% a*
their upztrsam valuss, it can be 2zxpsected to be least
accurate near =he airfoil, whers +he shock is strongest and
tha deviaticn from upstresam conditiong i1s the gr=2atest. An
improved anproximation in this region can ke obtained using
shock expansion theory, in which s and r— are assumed to he
gverywhere equal to thair values behind the shock at the
leading edqges, say s = 354 and - = oy This leads %o a
sligntly modified version of the simpls wave solution,

namely

€ = ﬁan‘lf'(p), p = Pml(B-rg), S = 5y

on C*: y = f(P) + (x-?)tan(6+p).

This apnroximaticn produces a very accurate solution at the
airfoil, even for flows with strong shocks, in which s and

r— are no* a%*t all constant globally. ©Trrors should he

P T A T T
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cxpected because the C= (compression) waves which ar:
produced by rerlecwion of =he C+ (2xpansion) waves a+t ths
front shock have been nsglectaed. dayes & Probstein (1%66)
explain *hat tacse reflections however are fairly weak, énd,
mor=z impor-an+tly, are nearlv cancelled by e¢xpansion wavas
produced by th2 intceraction of the C+ waves with thg antropy
or voctici=y layers. ‘“ahcny (1955) aives a siwmilar

explanation,

The shock =xpansion solution rapidly loses accuracy as

{2

the dis*ance from =Lz airfoil increases, This i3 in
contrast to siaple wave th2orv, which i3 accurate at

infinitv,

Presaent apnroximation

“e wmakc the assuwmption that the flow angle € is
approximnately cons+tant on principal characterissics. This
hol'ls true in the simole wave solution, and in general is

closely rclated *o shock expansion theory., This

)

zelavionship will be brought ouz la*er. If €y = 9, then
g «

(17) reducrs to

IE-P(p))p = {) or E-P (1) = -Pola), (23)

whare P, (d) = P[p(d,p(d))] - e(q,p(g)) is given explicitly
by the shock conditions., Substitution of € = F(p)-Py (o) in

the remaining zquation, (13), than gives

o b i e e ¢ A s = imn it s immnitt o e
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1
2P (plg - Pila) = -; sin 2p 50 (4) (29)
2

Po (o) and s(d) are known functions, zo (29) can be regarded
as an ordinary differential equation for p, in which p

enters nnly as a paramater, through the inizial value
p(Q,P) = PP, (0) + tan-1EY(p) 1.

Fquation (?9) is nonlinear, but can be readily solved using
staudard nurerical methods, The solusion in the dp-plane is
then conmrleted by compau<ing et«,p) = P(p(d,p))-Po(u) and
findirgy th=* shock p(q)_f:om~the coaputed soluzion p(d,p) and
the valussg p(d,P(q)) given by %*he shock conditions. (Sinc=

in vracsics this would involve in<erpolation, it is wmore

conveniart Lo use p(d,p(q)) as +ha ini+ial valuc and
integrate (29) downwards along each characteristic P = P(d).

Then P(d) can be computed from

EV(pld)) = =an{P[p (0, gld)) ] = Po(N)}

Ly inver*ing £'.,) The solution for €, p, and s in the
dp-plane is independant of x and y, because (17), the only

equation in which % or y appears, is5 neglected. The
“ransforma<ion bhack to the xy-planc is found by solving (27)
for A(«) (21lso an easy numerical calculation) and evaluating
the inteqrals (21) and (22). The solution obtained fron
this approximation will satisfy the boundary condition and

all =hree shock condi+ions, bu% will satisfy (17) only

approximately.
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This approximation is related to shock expansion theory
in the following way. Shock expansion theory shows that r-
is aprroximately constant alonqg the airfoil, and, as has
heegn rointed out by Xahcny and Skeat (1955) and Meyer
(1957), sirco any streanpline is a po=ential airfoil, -
should he approximately coastant along each s<reamline.

This is just (28).

In the literature this assuapzion is employed in various
ways., If r= = =P, (o), *hen by (17) €& = e(g), and hence also
= p(P), ag can bz seen from (5+)., Taking bo<h €& = € (p)
ang p = P(p) along wi%th = = «P_{(g) overdetermines +*he
protlcm however, since any one of A, p, and r— can be
wricten as a function of the other two (and s). This was
no=zd by Eqyers, Syver%son, and XKraus (1953). In <heir
genzralized shock expansion mathod (a numcrical construc+ion
similar to the method of characteristics), they resolvs this

Ly averaging rasults Assuming r— = -P,(x) and & = e(P) with

1l

those assuming r= = ~P, (¢) and p pp). While this seems
somewha+% arbitrqry, it can be shown *hat the corrcct resulew
in fact lies hetween the two (see Haycs & Probstein 1966, p.
4a%). Meyer (1857), on the other hand, implicitly drops th=
assumption p =,p(p), and uses the solu:ion r-— = =P, (¢) and

£ = E(?), which satisfiss (17) exactly, but does no* satisfy
(13) «

It is more consistent to approach the problew in eithe
of *wo ways: 1in equa*tion (17) assums (i) the left hand side

or (ii) the right hand side is zero. Then solve (17) along
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with the remaining equation, (13). In case (i), *he
solution hecon2s € = G(P), F = p(p), and- & = s(d). The
function G(P) 1s determined by the boundary condition, and
p(p) must bz dotermined by the shock'conﬁitions. It thoan
hagpens “hat over <he rear half of the airtfoil, p > P(1),
p(p) cannot be found, since no data is specificed on the rear
shocks This difficulty does not arise in approach (ii),
which is the one we adop:, This wme*thod requires more work,
hru* has been found <o ba more acciurate., It also produces
the same solution at the airfoil as shock expansion theory.
Additional supporz for =his choice is lens by the fact that
the fac*torx mul:iplvinq‘ed in (17) is in gencral guite swall,
Approach (i) has however been found uszeful for calculating
the flow bshind the tail shock, where the other method is

irappropriaze (see apnendix B),

S5._Mupezical method

Our approximate snluticn does not satisfy (17), or,
equivalently, =he C- equazion {(14). In this section we
presant a simple iterativé method for correcting the
solution s0 that it will matisfy all the eguations and
conditions.

The approximat2 solution is first computed on a
rec=anqular grid in *hoa dp-plaue, as shown in figures 4 and

9. The same grid noints are used in the iteration schem=,
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The front shock P(d) is thorefore kept fixed throughout th=2
i*asrations., Tais fixes the normalization of ¢, so0 for every
itzration bevonil the original approximation 7(q) is noz
given by (24) and must b2 found as part of the solution.
This also implies <hat o =1 will no longor correspond axactly
0 y= 0, |

Given the approximat: solution for 6, p, s, and x in the
cxp-nlana, a corr=2cted value of r— 13 coupunied firom the C-
equation, (14), starting at the shock witn the value given
by =he shock conditions and integrating along C-

charac«nris+ics:

I
% Tk —g w
c-

sin 2p ds. (30)

The new value :—(O,p) a* *he airfoil deterwmines a new value
of =+ +here, since v+ = 26 - £—, and e(O,P) is given by +he
boundary condition., &i+h <this as an inicial valus, a new -+
can be computed everywhere by inteqrating (13) along C+
characteris+tics:
X |
r*(d,P) = r+(0,p) + ( ;; sin 2R 3" (q) dde (31)
o
The «olntion given by r-, r£*, and g5 wili satisfy (13), (t4),
and the houndary condition, However, the naw value of
r+(d,?(q)) will no* in general satisfy <he shock conditions,
and hence will imply new values of n(q), s (o) , and
r-(d,p(d)). Tnis €furnishes a new initial value for

in*agratina (3)), which is us2>d to start the next itsration,
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In summary, %he steps of the method are as follows:

I. Compute approximatinn, fixing front shock and qrid
in dp-planc.

IX. Compute r-(q,g(q)) from the 3hock conditions and
T (d,B) 2vervywhers froa (3J).

ITI, Conpa*te new r+(0,p) = Zﬁ(ﬂ,p)ﬂz-(o,p) wi<h e(2,p)
from the boundary condi=ior 11 x-(u,ﬁ) from s=ap
IT. Computz r+(d,p) ryanywhaps from (31).

IV, Conmrutec new valuss 8 = (gH4r—) /2 and p=
P=1((c+~-x—)/2) evarcywhore, With the n2w solution
a+ *he shock compute a naw ﬁ(q) and s (q) from +he
shock conditions. Also recompute A(a) and X(doP)e

Ve Checg fer convergence and either gc to step II or
stop and compu-e y{d,p) o
This scheme has be=n igplemented using second-order
numsrical methods (trapesmoidal rule, etc.)s The dotails arz
given in appendix C.

The »valuaticn of +he inteqral (30) at step II is the
most complicatzd calculation in the procedure. In place of
equation (14) we migh% have integyrated (17), which is
equivalszn* and has *he advantage +that r= is differentiated
only with respact to F. in practice however, this does not
work very well. The iteration procedure doas not convergs
as quickly, and may no* converge a* all without modification
(sce Chong & Sirovich 1980). We attribute this to the fact
that small variations in r~ are naturally propayated along

thn C- charact=aris+tics.
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The execution of the numerical nrocedures which we have

dis¢iuased is beth rapid and inexpensive. As a resul=s we

have perfornad a mamber of calculaticns for several airfoils

over A rangc oL Mach numbers. The resulets presanted in the

figures ara foy a symn~tric circular arc airfoil wi<h

thicknese ratio 0.25, at wpstream Mach numbers 4, = 2.5 and

7.5« In scme f£iqu

[n}

2]

Ui

tha in+tzrmadin%e case My = 4,0 ig also
shown. Thesre cases were chosen in part for <he interesting
effects they exhihit.

The i*eration scheme is found to cenverye guite rapidly,
Lased on a comparison of the solutions at succesive
itcrations, In the following table, the maxima (over all
gria wvoints) or the dAiffareonces in the values of 8, pe and x

are given for the case Mg=7.5,

iteration Aa/k (0,0) Ap/p Ax/x
1 3,9595 0.,1170 2.3701
2 He141 00096 N.1221
3 0e 2028 0,0007 Ve112
4 0.00NN2 n.ﬂnné 0.0017
5 e V901 Jed103 D.0U09

The grcazest differeuncss are in x and occur within a few
qrid roinzs of =1, where x-w. Thke errors in x are smallaer

closer to the airfoil. For thinner airfoils and/or lowar

-
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Mach nunmbers, fewér iterations are required for the sanm?
accuracyv, In the cass of a 1)% thick parabolic arc airtoil,
for example, even at ¥y=10 the.difforence besween the
approxirate andl 2xact solutions is less than ona pcrcent in
€ ana p and sig per cen= in x. In such a casz =here is
li+=le reascn zc go bevond the approximate solution.

The casz Yp=2.5 is discussed in Holt (1¢77). TFigure 3
contains a ccmparison cof the lesading shock when computaed by
our method and <he EVLR method. The small diffcrence is

probahly attributable to conyiny 2rrors. In addition wz2

indicatn our approximate theorv and that which emerges from

a variant of snock «xpansion =heory (=he latier and “he BVLR

Ui

™M

curve are taken fror Hol:, p.77). In +his case, our
approximat2 soluticn is indistinguishable from the cxact
solu+~ion.

4e continue the presentation of this case by indicating
in tigure 4 a porticn of tin= grid in the 4F-plnne us=2d in
the numerical intsara+ion. (The increment 84 between the
streamlines shown is 0.1; the computations were done with
Ad=2,125,) The triangular region corresponds to the flow
behind *he +ail shock (see appendix B)., Figure 5 gives *the
antropy s (a) in the reqiod hetween the f£ront and tail
shocks, and sy(d) in the region behind the tail shocke. The
deflection angle € is ple4=ed versus o« in figur= 6 on each
of +the C* characteris*ics shown in figure &4, A
specification of & in *the reqion behind the tail shock is

deemed unnecessary sincz it is very nearly zero everywhers
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(181<2.905), Figure 7 contains the variation of r= varsus
on cach streamline of figure 4, Tinally, in figurc 3 th2
streamlines, cnaracteristics, and shock waves are shown
transforrmed back to the xy=-plan2. These figures complet=ly
determine +he soiu*tion. In particular, corresponding to any
point (%,y) of the rhysical plane we can determine ¢the
coordinates («.F). The entropy s is than rfound frow figure
5 and the deflzctinn argyle @ from figure b, The latter and
r= fron fiqure 7 d=fermine the Prandtl angyle P(p). All
o*her flcw properties “hen f£ollcw.

Fcr comparison we give in figures 9-13 sinilar data for
thz sare profilce at 1,=7.5, In this casg }|8|<0.02 behind
the tail skock.

Je Legin our diszcuzzion of *hese results Ly considering

the limit x—2o@, JFar beshind the airfoil the pressurs

ot

becomes constant, p-= 1, and as a conscquencs 8 -» J, I

“hen follows from thke equation of state that
az = exp[-(#~1)s;{a) /],

.

whele s4(¢) is given either by fiqure 5 or figure 10. TFrom

3
o
[N
)

(1), we can then compute the velocity g at infinity.
is shcwn in figure 14 €or Me = 2.5, 7.%, and the
in=a2rmcdiate cuse My = H.0 (same profile). As a result of

the non-uniform entropy, the flow at infinity has a

vorticity distribution,
Another feature cf interes+ is “he entropy variation

along the tail shock (figures 5 and 10). fThis has a : |
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two-scale anpearance, especially at the higher Mach number,
which shews a very rapid decreasz in s-renath in <he inizial

pcreionr of tke shock. The slower variation in en<«ropy

follows that inducad by the front shock. Looking at fiqurs

13, we zee that ths strearlines sprecad apart rapidly as the

. s

flow passes <he midchord posi-ion. The flow inclination a-=
g th2 tail shock therrfoie decreasss rapidly, which results in

a correspending decreéase in shock strength.

Ancther important etfect is also at work in this region.
The gas, which is cempressed a% the front shock, in

following the profile past the midchord experiences a rapid

-

35

expansion, which i3 sufficiently =<rong 50 *har +he local

Yaca nunber at the trailing odqge =2xceeds the upstrecam value

o= M =
‘0

$.93 for the 7.5 case). Since p is swmall, the

larje neqgative valus of € on ~he af+<er part of the airfoil

causzes *he principal charac-eristics “o have neygative

]

lores, so that waves originating there must intersect thae

“ail =hock ncar the airfoil, This quickly cu*s off the

T Ty

LECOVELY process. AS a resul= the Mach nuwmber alony =he

tail shock faliz off rapidly, which augments the rapid

1 decrease in strength of +~he tail shock. For the cass
Me = 7.5 the Yach number ﬁlonq th? shock wven falls below
* Te5e
A fea=ure which is somevha+ difficult to perceive from
E figures 8 ard 13 is that the tail shock angle is not
monotcnic, In figure 15 the variation of the slops of tho
tail shock is given for the three cases we have discussed,

i 2

Yo
Ly VVY‘,*‘
Py
e e+ sl
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For aach case the =hock angle decreases on leaving the
trailinag cdnges  (This result has been varified indepoendantly
by Janes €. Townsa2nd 1979, using a different nunerical
method develepzd bv “ann2l D, Salas.) This i3 conwrary <o
what is okserved f£or lower #ach numbers or thinner bodizs,

i¢ have seen that the angle of the incidznt flow ducreases

&

along *the shock. TE %h> Mach nunber to +he left of +he
shock were constan%, *his would predic: a deczease in shock
angle, The decrease ih Mach number along the zhock tends to
kave %h~ oprosite a2fttfec* howmver, %o increase =he shock
anjyle, Ip thess: caszes, n2ar ths trailing edge the
decreasing flew anale Joninates, For bigh Mach numbers the
shock angle is mors derend-=nt on ¢he flew angle “han on “ha
Jach number, as can be secen f£rom the fact that the shock
polars for difrfer=ant Mach nurhors aopzoach a limiting curve
as M —-» oo (s8¢ 2.9, Lienmann & Foghko 1957, p. 87). TFor

rfoils the =ftfect of

P<

lowsr MNach numrodsrs or thinnsr a

| ]

decreasing Maca nuwmher dorina=es the ecffect of deacreasing
flow anale.,

Yeturping to figqure 15 we also see that for Wy = 7.5 thzo
slore underagoes a s=cond oscillation in which it rises abova:
~he Yach angle at infinity, This is exﬁlained by +<he rapid
fall-off of ¥ach number along the shock, below its valuz at
infini<y, A final item of nots in figure 15 is that for
do = 745 *hke shock slope actually s*arts off wish a value
which is grcater than at infinity. The expansion proccss

alony the profile nproduczs a rzlativzly high #dach number at
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-bn wrailing elae, bu% it is no- great enough to kring the
zlope keolow the uns=reas value,

The vressura disvibution behind the airfeil is
inseraezting. An fiagures 16 and 17 wo show the pressuss
contours hehind the tail shock and <he values ot log p on

the x-avis fecr x>1, for the casss Mg = 2.5 and 7.5, The

Y
f:"l

u

18]

pras o on -h2 rear par:s of +hs airfoil is so low that, in

spi- f «he high shoc% s=rena*h a= +thL¢ trailing edge, <he

4]
o]

prassure juwrp throuah the shock dozs not briug p up to the

equilibrium rproessure n=1, Th2re is a rapid pressurc
increase irwediately bahird the <railing edge, in which p
increnses nkove ths equilibrium value, reaching a maximun

abou= ons cheord loang<hk oust., The rerurn %o 2quilibrium from

this roint is very aradual, The #o+al variation in pressur?2
ehind the +tail shocks is quit2 small compareu to that 1lcng
“ha airfoil surface (in *aerms of lou p, abouz 3% at Hp=2.5
and 1% at M,=7.5).
several other features of the calculations also marit

men=ion. 4dost notable perhaps is *he surprising constancy
of the dnflection arngl2 on th: princival characteristics.
Th: variation in 6 is almost undatectable in figure 6 and,
as tigure 11 indicates, the most sszrious departure occurs
trailing =2dge, where it is about 194 in <he wors<
casz. As mentioned already, € = 0 i3 an excellen:

approximavicn throughout the region behind +the *tail shock.

A r=zlated phencrenor is the near-straightness of the

. o

principal ctaracteris=ics. This howevar does no+t remain

e e itd
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«rus in *he recgion behind <he airfoil,

4¢ are alsc in a position to examing the basic assumption
of shcck exransion -heory, <hat r~ is constant on
strzavlines. From 2quation (17) we see that this condition
is closely relat:d to the constancy of 8 on principal
characteristicse As both figurass 7 and 12 inﬁicate, this is
a rzagonabls assump«ion, alshouah somewha+t remarkably it is
het-er at the airfoil +han in its neighborhocd, In bo<h
cages this assumption is far less satisfaccory behind the
«ail shock. Tie rapid down =s+t¢rok=z of the r= curves also

indicatas a large value of 84, although & itself remains

qui+te small,

This work was suppor+ed by *he National Aeronautics and

Space Admiristration under NASA Grant no. ®5G 18617,

Apnendix A: Case of anp arbitrary agas

For am arkitrary gas, <he eguations of motion in
characteristic form can be written (Hayes & Probstein 19566,

pe H34)

ds = 9 on dys/dx = =an 6 (A1)

i@ + § dp = 0 on dysdx = tan(€+p) (22)

joig

where § = v,/ (poaZpg?+an p). W¥e can consider § to be

3
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function of p and s, Ry introducing the variables

w(n,s)

1}

fé(p,s)dp and f(p,s) = dw(p,s)/ds,

which are defined so *ha*t dw = §dp +SLds, (A2) can he

written

de ¢+ dw =

If @ and L aras novw

and (A3) arc turee

+ Q15 on dysdx = tan(&xp) (A3)

regarded as func<ions of p and s, (A1)

equations in three unknowns: ., p, and s,

Equations (3) and (4) are a special case of (A3) in which

W= P(p) and o= (sin'Ep)/Zﬁ.

The transformation %o dp-coo:dinates gyoes through for ths

mcst par+t as before, Equarions (12)-(14) in the general

case hecons

(5E +

Sp 0

Q50 (q)

(6+W )y

0
v gp) (ETW) = st

vhere w is still given by (15), The counterpart of (19) is

Xo

Xa

H = ._9 + “”“”P cot p + (e~+p)Pt:m (8+p)

This =guation can in principle Lbe solved in the same manner

as (19), but we do

simple form (2)).

not havz an explicit integral of the

The assumption €4 = 0 in the geoneral case implics

X

Y O
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(e-cd)g =0 or €-w= -Wy(g). The resulting approximation
can ke expected to h2 valid at leas® in cases in which +he
behavior of th:e gas do2s not Aiffer to» greatly from that of
a perfect gas with constan< specific hea<z and ¥ = 1,4, Iz
has been shown (ses Haves & Probstsin 1966, §7.2) ~hat shock
expansion theory tends to lose accuracy if ¥ is allowed to

apprcach 1.

Arpendiz B: Tail shceck for a symassric airfoil

In the general casze, the solutions in the upper and lower
half rlanes can be computsed indspendantly, up to the
appcarance of the +.ail shocks. The flows from the top and
bottom interact behind =he airfoil, which complicates tha
couputation c¢f the tail shocks and the flow bz=hind them.

The upper and Lower regions behind “he airfoil are separatad

H

by 1 contac* disconzinuity, or slipstream, whose location isg

4]

unxrown a priori. Across the slipstream € and p are
con=inunus, but the o*her variables juwmp. This complication
does not arise in thke case of an airfoil symmetric with
ccspnect =0 =the x-axis; the slipstrean coincides wizh the
x=-axis, and can be considercd a rigid boundarv. The problenm

is 3%1l)l quite diffe

1

ent than the fron® shock problen,
because “hz flow upstrzzam of *he *ail shock is not uniform.
The transformation to wp-coordinates behind the tail

shock can be cnosen differently than that ahead of it. 1In

;
Y
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rarticular, it is more proper to regard the C-
characteristics as +the principal characteristics, since the
Ct waves are only produced as reflections of the C—- waves,
which origina+tz at the tail shock (see figure 1). On the
other hand, we have found that for <he iteration procedura
it is tetter to take the C+ characteristics as the.
p-coordina*es, hecause this has the effect of putting nore

nts near %he ¢trailina edge, where the most rapid

e

po
variatisn in the solution occurs. Howevesr, the .approximate
solu%ion derivzd below is more accurate if the C-
cha:acﬁeristics are taken a§ P:= c¢onstant. Modifications
for the use of the C- Eharacteristics is coordinates in
place of the Ct charactearistics are straightforward.

The normaliza<tions of « and ? behind +he tail shock are

alzo different than those ahead of i<%. + 1s na*ural to

4

keep o constant on streamlines as they cross the shock.
Alsc, ra+ther than set g = x(O,ﬁ), w2 cal nhormalize p so that
the region x>1 is mappad into a finite region in the

W -plane. This was done Ly setting Bila) = 1 +a/2,
producing the configurations shown in figures 4 and 9,

The calculation cf *the tail shock ?z(d) can he done as
follows. We assume that fhe solutions for 8{d,p), pld.8),
and x(d,ﬁ) are known in the neighborkood of Pz(x). Equation
(26) holds at Pz(d) as well as at P(d), and sinca in the
former case Xy and XP are known functions, ve can write (25)

as an ordinary differen%ial equation for Pz(q):
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tan N, = “an(e+p) xg

Bylad) = I!(d.pz(vl)) (B1)

tan Na - tan € XP P=pz(a()
As Y2t My (d) iz undetermined, If we specify one variable,
gsay €&, jus* *o the right of the shock [i.e. at B = P,hﬂ ]
then we can solve +he shock conditions for qz(q), and solve
(B1). This enables us to set up an itaration procedure
similar <o that used for the froat flow,

The approximatz solnticn used for =he flow over the
airfoil cannot be conveniently employed for the flow behind
“he =ail shock, because +he nonuniform flow o its left
makz2s it impossible to calculate P,(q) and s(g) a priori for
use in (29), Therefors we use th2 simplcer of the
approvimations given in sechtion 4:; €& = 63(P), p = ps(p),
and g = 33(“)' All th2 characteristics intersect +he
X¥=-axis, where 8 = 0, =0 es(P) = 0, and hence & = 1
¢varywhere, In particular 6 = 0 a=* B~ F,(d). Je can
therefore sclvi: for qun as in the previous paraqraph, and
also compute all other gyuantities on hoth sides of the
shock. Thig dezermines B3 (p) and S3(p) .

The computation of the transforma+tion from dP- TO
xy-coordinates is also somewhat different, Denoting the
known value x(d,szq)) by X,(«) , we nust have

x(d, gy (d))=x, (d) which implics

X3(d) = xg (s py(d)) * Pt () Xp(d, by (d)) (52)

An aquaticn cf the form (26) also holds at P= ?;(d)!

e ion ST ey e
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)= Xy (% p,(d)) + b3 (4)xﬂ(°‘rpg(‘”)o (B33)
If we elimina*e XP betyeen +hese =wo, substitu=e
X¢ = B3 (4)Cla,p) [where we recall Q=a°"cos(e+)x) 1, and solve
for Az(d), wWe get
X} () tan ”,(a) - tan 8 :
Ay(a) = (B4)
Qd, p3ld)) =an(€+p) - *an € = P3l«)
from which we can determine
, o
XH:P) = X (dg(p)) + f A3(°')Q(°':P)d°' (B5)
Y (p)
where °{3(P) denotes thz inverse of P,(«). A similar
cqua<ion fcllcws for YL, B) o
The iteration schens proceeds essentially as betore,
Given r- (o, P;(ot)) from th= shock condi+tions, wz integrate
(30) along C— charac=eristics down to the slipstreamo =0,
Then we reset c+(0,g) = -r'(o,p), and integrate (31) upwards
to p; () The naw r+ and r~ define a new ©(d/ gy («)), which
is used to solve for a new shock ‘32 (¢) and new fanctions
N2 ld) r Sy(«), and r-(q,p3(q)), with which we start the noxt
iteration,
Appendix_ C: Dztails of numerical wethod
This aprendix contains the details of cach step of the
ixreration schewe described in sec+ion 5, as presently

AT %
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Szep I. e take a uniform grid in & witih N+1 points

d; = idd (i=2,1,404,8), where Ad = 1/N. Over the front half

of =he airfcil +he P arid poin%s are taken =o be Bi = g(aj)
(7=94 14404 ,8), where p(q) is the =2quation of the shock as
yiven by the approximate soluticn., Over the rear half of
the airfoil th2 P arid pnoin%s are *akcn cvenly spaced.

The approximate solntion in the qp-plane reguires thse
solution of the ordinary differential equation (29) for each
Fj. This was done by *he iwmproved Euler method, which for
the general zquation dg/dt = @(g,z) is qiven by

At

Tho = 5k * 5;{?(’:kl§k) + g (ke 15t AT Q(Th B ) ] (c)

Tha approximats soluticn is cowmpleted by solving the
incegral equation (27) for A(«) and evaluating x and y from
(21) and4 (22). Equation (27) is linear, and can ke readily
solved by the trapezoidal ruls: the integrai is
approxima+<ed by the appropriate sum, and the resulting
equation is solved for A(«E) in fteras of A(do) s DA(d,) ace,
A(qjﬂ )o The derivatives Qp(qi,Fj) appearing in the
integral are evalua%ed numerically usiné a three point
scheme on “he uneven 2 mesh. The integrals for x and vy,
(21) and (22), are computed by the trapezoidal rule.

Step_II, We can write (14) as

| , .
dr—- = - E; sin 2p ds on C-: dﬁ/da =y (C2)

DA i A 4 e et e o Sbe




T e~ 5~

- 33 =
where w is given gy (15)« In computing w, xP must be
evaluated numerically, butz Xy is given analytically by (29).
Th2 C- charactaristic through ihe point (d,P) is drawn back

to intersect the line seqment betusen (d,P-Ap) and (a+ba,p)

11

at *h¢ point (3,8) (q+#Ad,p+(v-1)Ap). To £ind this peint

the eqguaticn dp/dq w is integrated @rom q %0 3, using *the
improved Euler method (C1) again, with the modification that
a st appreximation to w(s,ﬁ) must be found by
interpclaticn. We zake

v o=[1- w(dl )"' -1
_ Plap

A , .
Y = - w(d,B- +9 +b . L
! (1 )W( 'P op) W(“ d’F) PXP? \;rl‘.:. Cotes ‘:‘: _
OBlbi\Al,lx~~“ o
and then redefine ¥ by

v o=[1- z(ww,p)ﬂn -1

of

This value is correc* to second order and is used =o

interpolate the value

1y

== (=)= (4,p-0p) +V I (4+ba,p)

and, siwmilarly, i and g. The value of r—(d,g) iz fhen

computed by the trapezoidal rule:
A 1
L= (4,p) = = - -—[sxn 24uid,p) + sin 2110 s (4) -5 1.
_ Y g
A somewha* simpler method can be used if (q,p) is two or

mor2 arid pecints from the shock. de write (14) as
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; Iy + wrF = - Py sin 2p s' («),

l

3

? evaluating w and p az (d,p), and replacing 7 and r; by

throe-roint ons=-sided differences enmploying points upward

and to the left of (q,F), respectively, Then we solve for

:-(a,p).

e = G S e s S

Again using th:® tragpezoidal rule, we have

ct(d+dd,B8) = ct(a,p) +
P P (C3)

s 2in Zp(d,P) + sin 2p(d+bd,B) ][5 (4+0d) =5 (d) Je

S=cp_IV. While it is possible in theory to solve =he

shock relations given any onc quantity jus+t <0 the right of
the shock, in practice it is difficult given rt or r—.

Tharcfore

L€

we use *he new e(a,P) compu+sd from r+ arnd r—, and

: solve the shock relations for ﬂ(d), s (&) , and p(q,p(q)) as

func+ions

of e(q,p(q)). Then = (o, B(q)) is redefined from

“hese values to star+t stap II,

S s SREES ST N

The computations of A(g) and x(«,p) are done in the sane

way as in the aovproximate solution., It is not necassary to

= opbtained, since

o

compu=e y(d,P) until +he final soclufion i
only x appears in the equations.

Step_ Ve To check for convergence, we compare 6, and x

Br

at all grid points between successive jterations, and stop
k. . Py N .
: when *“he maximam Aifference is less <han some given
E : tolsrance.
}
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Tiqure caprions

Figqure 1. Supersonic flow past an airfoil: heavy lines
denote shock waves: solid linzs Gzrocze streamlinss and
C*+ characteristics; dasbhed lines denote C-
charac=ariscics,.

Fijure 2, Jumnps in cntropy s and Riemann invaciant r~ across

a shock wave as a function of €, (8, = 0) at various

Yach nurkers, , 8sy -==-,41-,

Figure 3. Front shock for f£low past a 285s circular arc
profile at %,=2.5, ===-=-, BVLIR method; =-—--—, shock
expansion method (hoth from Holt, 1877); ———, presant

approxima== and 2x3c< methods.

Figure 8, Me=2.5., Flow field in qp-plane.

Figura 5., "5,=2.5. Entropy s{«) ) in rcgion betwsen
fron« and tail shocks, and'sz(q) {(=---) in region behind
+ail shock.

Figyure 6, %,=2.5. Flow angle A vs. & on wach C*+
charac=eristic of fiyur= 4,

Figqure 7. M,=2.5, Riemann invariant = vs. P on each

strzamline of fiqgqure 4,

igure 8. My=2.5. Flow field in xy-plane, 'The sireamlines

T

and C* characteristics corresvond %o <he lincs o =
constant and p = congstant, respectively, in figure 4,

Figqure 9., ¥,=7.5. Flow field in dF-plane.

Fiqure 10. *,=7.5. Entropy 5(q) ( ) in ragion hetween

front and tail shocks, and S3(q) (=---) in region behind

%
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tail shock.
Figure 11, "15=7.5¢ Flow angl2 6 v3. o on each C*
characteristic of figure 1,
Figurec 12, Mg=7.5. Tiemarn invariant 1= vise. F on each
streamline of figura 9,
Figurec 13. M =7.5. Flow field in xy-plane. The streamlin=ss
antd C+ ckaractaris<ics corrssnond to the lines o =
cers*art and g = constant, respectively, in figure 9,
Fijyure 14, Velocity profiles far behind airfoil for Mg =
2.0, 4.9, and 7.5, Dashsd lines dcnote asymptotic
values Hge
Figqure 15. Tail shock slope tanq, vs.d for Mo = 2.5, 4.0,
and 7.%. Dashed lines arc asymptotic values, tan Poe
Pigurs 16.  Bp=2.5. Uppar: pressure contours behind tail
shock; log p = =0.,97{0.,01)0 and 9(0.001)0.,01. Lower:
log p vs. x on x-axis.
- Figure 17. %,=7.5. Upper: pressure contours behind tail
: shock; log p = =0.5(D.1) 0.1 and 0,1(0.02) 0,28, Lower:

log p vs, X on x-axis.
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