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AOst-rac`

Two-dimf^n sig nal .tea(ly :;iipersonic flow over an airfoil is

considered. A highly ac:curat approximation and a nets,

rapidly ccnvergent numerical procedure partly based on it

are derveloped. Fxampl-s for a sy:ametric airfoil over a

ran(je of .Mach numb ers 'ire cliv-2n. Several interesting

fedtures are found in =h? calculation of the tail shock and

the flow behind the airfoil.
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1. Lntroduc4ion

This p a per contains an i.nv Aostigation of two-dimensional

supersonic qas dynamic flows. Although the final step in

our investigation is numerical, we use methods which

incorporate our analytical and physical know adge of such

floes. The approach is weld-.:suited Moth for numerical

integration and for tb q intierrrntation of the resultinq flow

phenoirena. In the present investigation, several now or

little-known eCfects corcernirq the tail shock and flow

behind a two-dimensional airfoil emerge. Discussion of

these is roserved for :section 6. A r:_ -^liminary version of

this approach tor the cus p of one-dimensional unsteady flow

has alr rady bc-an reported (Sirovi.ch F Chonq 1980, Chonq s,

Sirovich 1980) .

For problems in which the shock waves are weak,

variaticns in entropy and one Riemann invariant are

third -order  eftec*_s, and the solution is approximately given

by a simple wave, or Prandtl-Meyer ex pansion (Friedrichs.

19411; see Ligh.thill 1960 for corrections and extension.3) .

In fact the numerical change in tlic Riomann invariant is

significantly smaller than that in entropy (section 3).

This suggests g hat a laryrr class of flows can be viewed as

the interaction of a simple wave and an entropy variation,

which in turn sugges y s that streamlines and principal

characteristics be used as coordinates. Adamson (1968) has

used a similar coordinate system in another context.

s:,•,



Thn usefnlnzs .3 of -hi s tans `ormarion is also rela ted to

shock expansion theory, a method for calculating surface

prewosur ps wtli.cti Boas hack to rpa twin ( 1931) .	 Tt depends

upon the t . ict that reflection o of the outgoing waves on the

principal characteristics sirn weak and tend to cancel each

oth7r (Tayni- F, Probstnin 1966, Mahony 1955)e Shock

::mansion theo y ha s bneri extended to include computation of

tha full f l aw field (EOgcrs, Syvert.son ^ Kraus 1953, Meyer

1957) . Jon ps ( 1 1463) , in another a pproac h , bridges shock

expansion 11, eory and si mx)lc wave theory by considering

slowly varying perturhations of th y latter. -ur approximata

solution i ,: closel y related to shock expansion theory.

,4e u F -he ;ap proximate solu`i.on a ".he first step of , n

it^rariva numerical t; ► ethoc3 to com p ute. tho exact solution.

procedur° is quit- o dis tinct- from c u rr{nt nu merical

.ir-:1hodr, for his type of problem.	 For the most part. such

approaches apply a variety of differencing schemes to the

gas dynamic egaations in their standard form (for a

comparison of :several methods see Ta y lor, Ndefo r, Masson

1972). Tmnlem_ntation is then relatively simple, but may

recruit _= many mush points and/or be sub jsct to restrictive

stability critaria. Methods which do not cxplicit.ly fit

shock wave- also tend to have: difficulty with them,

producin g oscillations near or diffusing the discontinuity.

A more powr-rful method which fi gs the shock wave explicitly

is tile- gVL P method (3a.benko, et al. 1966, Holt 1979) . This

is a ra ther unwieldy method, which is actually i ntended for
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more complicated problRnins than that dealt with here. The

method of characteristics (see Liepmann 6 Roshko 1957, ch.

12), to which our method is more closely related, has also

been found in practice to be unwieldy and time:-consuming.

Comparisons . of comtauta,tion time are difficult to make,

because of the many variables involvFd ., but the procedure we

pr;;^S pnM should com pare Favorably with others available. Thr:-)

arproximate solution is probably sufficiently accurate in

many instances, and even in the worst cases we have

calculated only about three or hour iterations are required

to achi?ve an accurac y of one, percent throughout the flow

field.

2. Formulation of nrohl.,^m

she consider the situation shown in figure 1, in which a

uni form flow of Mach number_ M.>1 is incident upon a

`wo-dimensional symmetric airfoil. It is assumed that there

are attached shocks at the leading and trailing edges, and

that the flow remains supersonic everywhere. yie discuss the

flow in the upper half planes ahead of the tail shock. The

tail shock and the flow behind it arc treated in appendix 9.

If t:hr-, airfoil i s not symm4tric, the flow fields above and

below it can each he compu,ced by tho methods described here,

independently, up to the appearance of the tail shocks.

The coordinates x and y are scaled by the airfoil leng th;	 j
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tl:e pressure F and ~he dar,:,ity p by their upstream valu?s P.

and pa ; the velocit y (u,v) = (q cos (-, q sin 6) and the

sound speo ,l a by the lvost.rcam sound speed ao ; and 1be

entropy s, which i5 set tc -zero upstream, by the: qas

con,:-an- P.	 ha considsr, a p orfect cas with constant

:^peci,f.ic hea-s cv =/ (- 1) anr3 cP = IP c v , for which }he

equation of state is n = p *=.3x pf (t-1) s l and the sound speed

is g iven by a O = p/p. The calculations here were done for

'&= 1.4. Modifications for the case of a gas with a general

gUation of state ar` outlined in Appendix A.

Th^- equati.cas of i.n visci=J two- ii,mensional steady flow ar t

conveni.=ntly wri.r.--en in characteri.s~ic form with the entropv

s, the flour an.;lo e, and the Mach angle ji = sin- 1 (1/1fl

(wharia Y=q/a is the local ;xach number) as dependent

va_is"lns. All o:her physical quantities can be obtained

from .,;ere. anti Yornoulli's equation

'k-1	 *1-1
az +	 f(a = 1 + ..— M2	 (1)

2	 2

The ^<ru:aticns of motion are ('Meyer 1960, p. 273)

dy
cis - J on straamlines. — = tan E1,	 (2)

dx

1	 dy
:i (e+p (p)) _	 — sin 2 11 ds on C+: — = tan (e+ µ) .	 (3)

2f	 dx

j_
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d (e - R	 — sin 2p cis on C- : — = tan ( H -}a) ,	 (4)
2f	 dx

where F (p) is liven by

P (p) _	 ton-I ( rA tan }1 ) - P,	 J► _ (-t +1	 1) •

The streamlines and the C +• and r,, - charact eListics ara shown

in figure 1. `Pie quantities r±	 9±P (p) are called thy,

Pi-, mann invariants, Another useful form of (3) and (4) is

1	 dr	 d 
de ± -- sir. 2(i -- = 0 on C : -- = *_an (6±li) .	 (a)

2e	 p	 d 

The appropriate boundary condition at the airfoil is

tin C = r' (x)	 on y = f (x)	 (6)

In addition, th^ sol ,ition far away from the airfoil (y-Y ±w )
must approach the upstream conditions 9 = 0, µ	 )i o , and

s = 0. 11he jumps in 6, p, and s across the shocks are

governc-!d by the Rankine-flugoni.ot conditions (iiepmann r;

Roshko 1957, p . 85). If we denote the shocr. angle- by j, and

flo g quantities on either side of the shock by subscripts 1

and 2, these conditions can be written

1 (M2-1) ta.nZ
tan (P, Z -F^)	 .	 (7)

:an (^-e^)	 f+1	 -1
(1+ 2 M2) + ( 1+ 

2 
.11 ) tan 2 (^-.F + )

..
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Y- -1
1 +	 z
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a t 	vf+ 1
1 +

2*

e-1

	

1 +	 z

	

1	 2*

loci (1+7) + 1p 1 0 1.j	 ].	 ()

	

1 +	 z

2V'

wbere the shoe,". streng th z = ( p x -p, ) /p, is given by

?f

	

z =	 j ^?^ .y in' (^-E^,) - 1 ].	 (1^))
^+1

Equ itior. (9) d•o ermines the jurip iti p, since a 2! can be

wri. - ten as a. furac-:ion of 'M or µ u ,i.ng (1) .

1. A Tiew coordinate system

iCLO SS a shack wave the ent.r oFv and one. of the "lUemann

invarian+s (r- for 
I 

p ositive, r+ for 1-negative)  chang3

	

only at t1..ird order in the shock st-reroi l-h.	 T,hi.s can be

shown by Taylor series expansions (or see Courwit F

Friedrichs 1948, S^etion 138). In fiqure 2 the jumps in s

and r- ar ,o plotted on a Logarithm is scale against t-he

detlecti.on angle e. for various Hach numbers M,. Without

	

loss of qen=rali*.y. we can sca t e, =9 and rake e 2 , and henc;= ^,	 I
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positiv y . ` h ,? shock strength is of the same order as top

deflection angle, so for small 8 2. , the curves approach

Str.ii g ht lii ► C-s of Slone vhree. For larger values of e 2 , the

rats of increase of As and pr- tend'*.o drop off somewhat.

For a weak shock wave As and Qr. — can be considered

negligiblc compared to, say, pr +, which is a first-order

quantity. Th-3ze v tluo:s also provi io eztimates for the

variation in s and r— throughout the flow field. TUS is

obvious in she case of s, since it is constant on

strcamlin ,,=s. in fact the same is ver y nearly true of r— for

a wide ranch: of conditions. This will be seen in ccIlnection

with. shock °xp insion thaor y later on. Therefore, for a weak

shock wave s and r arsi nearly con. --an . everywhere, and the

solution is ipproximat~e1v given by . a simple wave on the C+,

or principal, charnctoT:ictics (sa section. 4) .

.1 secon(l feature of interest in figure 2 is that for any

given Plach number and deflec t ion angle the jump in r— is

signifi.ca.ntly .:smaller than that in s. 	 At .1 1  = 5 and

H Z = 1. 2, for examp.l^:, A.3 = 0.i9 while p r— is only 0.33.

Thsre`_ore, for weak to moderate strength shock waves, the

flow in '-he lar p or half plane can bo regarded as primarily an

interaction bctwiF.en the simplrz wavri and an entropy

variation, with r— playing only a small role.

With *his i.n mind we introduce a coordinate system (o(,P)

consistinq of the the streamlines, of = constant, and the

principal (C + ) characteristic. ,	 = constant. BV

definition, of and	 must; Satisfy
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dz + oty, tan 8 = +),	 px + p t  tan ( e +p) = J.	 (11)

sinc ,a any function of of will .3atisfy tht^ r.°irst equation alid

any function of p will satisfy rho second, two covditions

will to rcquir d later to fix the transtormations.

In the new coordinate systsm (2) becomes

sp, = ^),	 (12)

or s	 (d) . Similarly (3) and (4) becom e

0 +2 (1 1 ) )a = -- :fi n 2 1 1 s' (d) ,	 (13)

2t

a	 1
(ad + w a^) (E-? (µ)) - - — :y in 2 11	 ' (d) ► 	 (14)

Px + P', tan ( 9 -11)	 2	 x_	 q

o( x + of, tan ( e - 11)	 1 - tan F tan 11 x^

The second -xpressi.on for w follows from (11) and the

functional relation

ay	 ay	 1	 alp _XA

P X	 r ='	 Yc{`/P"y^ X 13	 - Yd	 Xd

Usin<a (15) and (13) , equation (14) can be simpltiod to

Y,

(@-P (11))	 _ (1 - tan A tan 11)	 Ha •	 (17)

Xd

4



Sinctc: x an3 y are now depen den': variahl ps, *wo additional

equati.ons ar p required for them. 'T h y se ar(: Benz.,,%hc- 1 by

(1 1) , Odch )^v (16) can be writtran as,

v^ = xp	 an C,	 vCi = x	 +:,,In (e+11)

Equ itions ('12), (13) , (17) , and (1d) a.re Live equations in

>~ivc? is?aknowns:	 =, x, and y.

1- is possible to slimina:e y from the e,ua}ions

immediatel y ry settinq v
P-4 

= yq $ in (18) . This -gives

g	 [ title-Lan ( e +)1) I xap + 601
	 c E x--a - (@+p) P sec (F+)i) .

xq.	
sr	

x.4

which, us-i p y (17) , can b ,: written

x
U = 	 + (Ij + p (p) )^ cot )i + ((-+Ii) ^ tan (e+)I) . 	 (19)

x^

Tlv~, flirt ar.d -him t}^r:ns are t(ie p derivatives of loy xa

ar,ri - 10 14 cos ( e +li) , rec p cr:i.voly. The second -arm can alFo

br in-Qura*:FC3 explicitly; the result is A .Loy a., where we

recall ^ = (y,+1 )/ (f-1) . Tner :fore (19) has as a first

in-,I _gral

x d = A (d) a- A co's (E+p) .	 (2.))

where A (a) is an ari itrary function to be determined later.

ifence x can be written

of
x (a,	 x (o,) ± S i (co a-,A cus, (e+V) d g .	 (21)

0

I
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Similarly, Fwo:u (19) wn (1?r

of

	

y (a. P)	 +	 S	 (ac) a- A sia (Ll +p) dal.	 (22)
0

So tar a and r have vo+- boizzn.;;Ipcified Leyond saying d

co n: tan*. on streamlinec, and ^, = constant on C+

c; a::act-ricticA. Tl ► r beundary and shock conditions in the

(?P - rlarc- r.-an b-^ si riplifi-ci	 by normalizinq d anki

appror,riat^ly. We let th;= airfoil surface be of = 0, and

normalize P ty Sett.i.n q 	x .1`. d = C).	 Th y: boundary

conditior ff) then t ecom ,

	

x (0,P) = P .	 Y ( `1 ,P) = t (P) ,	 e (!),p) = tap- 1 f I (P) .	 (23)

Cne coi:vPni^n` Wray or: ►normalizina cl is to t .ake the front

h;)c , ::tngl 4, j(a) to b--: qiv-n !ay

tan VI) = (1-a{) - a n J( °)) + d tan j i o	 (2'))

wl,e:n(0) i.a mown xrorn solving the shock conditions at -ho

1^:a.ii nil ^dac, and )x o is ±he uostromp Mich angle, which the

shock a p rroachy !s far away from tri p. airtoil.	 (We assume that

iz a s-ri.ctly decrea-3inq f.unctioll.) 	 The tilow field in -ha

upp?r half -;lane thus i::, mined i,ntio a fin.i-e region in tha

dy-riani., as shown in ti(iurrDs 4 and 9. 	 `l'l.,e principal

charactr-.ristics Nzcov- v--r-ical li.nn.;, and the s-reamlin?=

become horizontal lines. 'Thc: front shock maps into some

curvy: P (off) ,	 and	 the	 r^D :tr	 hock	 into two s*parat.e curves

pz(4) an'i	 p3(-o •	 now vari'i })l?Li 	 on pZ (cj)	 denote; valu .M: s	 jus

to the 1. -ft of the rear shock,	 and t.l:os-	 on	 P3 (01) denote -ha



vale(-s -just to the r iqht.	 The di icu:, suorl of t31::sc. is Latt

to appendix P.

t,ith thv oh .aclC y-Inglq ^(4') a .jiv•7n Cunc, ion, the shock

conditions (7)- ( Q ) c;•an be immediat^al y solvcid for e (^,^(^)) ,

11 (K, P(q) ) , .Ind s (el) . 	 The shock p (ot) i r solf will in Cf^n^=a1

d ,p--n('. on the rest oh th3 solution, hawcvLr.

At p= ^(^) -he con;iition

	

AAA,,..	 7 '(	 '(	 q
tan /I - rr ._	 /	 QlYl^^.V 1^3^ 1	 ^'^5)^ 1 . YL

	

t	 x	 Kd t X P ^, ( °r )

m.uz;t he	 U =inn (18), this can Le written

x  + h (d) -p = n on P = p(a') .	 (26)

wh4.:r<;

" a n	 t an H

(CO
tpan ^ - -aTI	 + ) i)	 ^ = ^(a)

Seta; it1^Fion of (21) for x i n (26) cxives a linear intc,4ral

t^q u,ition for A (o() :

C(
^ti(^t)^(^t ► p(a)) + b(a)[1 +	 A(J)O^(rf3(d))cl?] _ )	 (27)

0

where Q = a- A cos (9+p) . if th D solution for e, )i, and s is

knoun in t.h,y off-plane, this equation can lie solved for A

arrrl the jransfor.mation back to tivs nhysical plane, compute.l

with (21) and (22) . In g gneral however the solution in tfi-I

40-plane d ,- Fends on x through (17) .

Up to this poin t the aqua}ions in 4'Vcooruinates have
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heel) dC.'.iv(=tl without InproximatLone and he>ncc are eyuival,?n`.

to thr Original zet (2) ` (4) .

4. „ ► :nroxilrat.e solut ion,3

_i' plole wavt?__anuroximation

As fi,-- rttcned earlier, in a croblem wish weak shock waves

dOVi%a`iOTIS in z an al r- from the-air ups'-r.aCu values are

third-order tluantitias and can be r.eglsctcd; that is, it can

l;o as:.?iim p d -:ha'. s _ ,) an a l r- = -P (jip) ?v p ivwher t.-:* 	The

solution of (2) - (4) `hoTi is a si,ianl- slave, in which all

quantiti	 arc con tan gy:. on th,a prin.cip:al characteristics,

,hick in turn arz straitlht lines:

F	 tan- -, f I T .	 11 = P- 1 (8+P ( (l o) ) ,	 s = ')

011	 C+: y = f. (p) + (x-p) tan ( E +i1) .

This iapr, OXima-ioll is dTIC -a Fri d -i.chc3 (1948) .	 (Priedrichs

f:ur tior simpliried th = problepl. by neglecting terms of third

or;i r an:l t igh r througliout the calcula":ion,)	 Tho solls-ion

satisi-ics ti-.c l3oundar y condition, but can .satisfy only one

oL	 conditions at tlie% shoci;.	 Howovc r:, since two

guars }i ti_ s (s and r-) are consorv:4d up to -bird order across

tll ,2 shock, i.f one condition _J s sat:iafiod the other two w.1,11

;o Satisfied u ?J to 't'-hird o.r.lor. 	 It is convonicnt. to retain

the shod condition on 6, equation (7) , which can be solved

R'.

yy.
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for tho shock angle as a function of a (^) .	 Denoting tha

shack b y ( X (P) ,Y (p) we have then

,7	 t^I I(zz.- ^I	 .	 , i j POORY (/l) = f (p) + C ^c (P) - j; ^.an ( t̂ 1 ^^1) ,	 ! A,ktl ei^ lil 

Y' (^) /x' (^) = tan	 •

flimina+- r. j Y (p) hetw(^sn these two produces a linear

fi_s+--ordc=r ordinary differnn*^i.31 equation for x (p) , for

which an cxnlicit solution is easily found.

Shock ^Y p ansi.on_^ ory

Because simpl y wave t eory takes s and r- constant at

ti = it un tram va lu=s, it cai) be ^^xpcctod to be least

accurate near the airfoil, wh^:re tho shock is stronge * and

th :: ilr_v iation from up.atrc.am conditions is the qr--atest.	 An

improve l anproximation in thi,a re=_.gion can be obtained using

shock expansion th=eory, in which s and r- are assumed to he

evcrywher_e equal to thoir values behind the shock at the

lea,ling e{dgc, say s = as and r- = ro. This leads to a

s.ligntly modified v^Lrsio.n of the simpl y= wave solution,

namely

F = tan- i f^ (^) ^	 (1 = p-1 ( g -ro) ,	 s = so

on	 c + - y = f	 + (x-P) tan (6+(,) .

TUz ap p roximation produces a very acctlraMe solution at the

airfoil, even for flows with strong shocks, in which s and

r- are not at all constant globally. Errors should be

i

NO..	 y
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cxpccted becauje h- C;- (CJmkr,^2 ion) waves which ar a

producc-'3 by rerlection of *.he C + (*expansion) waves at th=

front shock have b a en	 :dyes & Probstein (1966)

exT)l =iin that tar-se refIcct~ions howover are fairly weak, an'i,

Mori imnor • znt.i Y, are nr.=i_lv can ce llcd by rxpansi.on wa ves

produced by th? in+- Fraction of the C+ waves wit;>, the entropy

or vortici-y layers.	 '9ahcr.y (1 1155) hives a similar

explanation.

The :hock expans on solution rapidly loses accuracy as

the distance from t} ,:) airfoil. inc:.-eases. This is in

contrast to simpl(= wav y th:^orv, which is accurate at

infinity.

Preq-n t—i1T)rnxima±inn

Nt wakc the assumption that the flow angle e is

approximately cons *;ant on prii7ci pal cha actaris-^ic^;.	 Tea -

holds true in the simolc wave solution, and it gFn=ral is

closely related to shock expansion theory. This

201ationshitp will be brought out la 4 car. Tt

(17) reduc es -, to

le - P ()z)) p = 7	 or	 e- P ((1) = -Po (a) ,
	 (2a)

whert Po (,() = >?C (i (a, P (4) ) ) - e ( 1, p(Cf) ) is giv:^n explicitly

by the ;hoer conditions. substitution. of 6 = P (p) -Po (cj) in

the rcma.inU!a --quation, (13) , t:h=2n give-_s
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1
2P (p) d - na (a) _ — sin 211 s'	 (29)

2f

na (or) and s (ot) ar(_- known functions, so (29) can be regarded

as ^n oudinary diffc.r r, ntial c(1 u,ation for p, in which p

ev-1irs only as' a paa;amntor., through the initial value,

rquation (7 11 ) is nonlinear, but can be readily solved using

s-an Jar-:( nu!torical rsn-ho ,is,	 The s. olu-ion in the alp-plane is

thwn c:cmr.lo i-e(i by comr,,t l:inq	 P (p (d+) - ' c (al) and

findiry 47ht s)i)ck p(d) from the co^iputed solution ji (d,p) :and

th p- Val ucc 11 (01, p (q) ) (liven by tho .3hock conditions. 	 (ai11c

in n: ac-Ac" this wouliq i.nvol y ­_ interpolation, it is more

convcni ,^rt to use	 as the initial value and

intr grafc (29) downwar, l	 along oach charea.cteristic	
P = P (a) .

Then 
p

(q) can be computed from

f I ( pk) ) = ran (P[ )i (0, P(d) ) I - P O N) }

by invor 1-ing f'.)	 Thn solution for F, p, and s in -he

dp- plane iw ind(=_pendent of x and y, because (17) , the only

equation ir which x or y appears, is n gle;cted. 'File

-ransforma-ian hack, to the xy-plan( is found by solving (27)

for A (o() (-31sa an easy numerical calculation) and evaluatinq

the integrils (21) and (22). fihe solution obtained from

this approximation will satisfy the boundary condition and

all	 shoc;%, condi-ions, but will satisfy (17) only

approximately.
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--his approximation is related to s=hock expansion theory

in the following way. Shock expansion theory shows that r-

is ap p roximately constant along the airfoil, anti, as has

hoen roin-:Pd out by 9ahcny and Skrait (1955) and Meyer

(1 14 57) , SiPcr any	 is a po~c:nt.i.al airfoil, r —

should he approximately constant along each streamline.

This is just (28).

In '_h literature this assumption is employed in various

way=. If r- = -Po (d) , -^hon by (17) f3 = 6	 and hence alto

p = p	 , as can big seen from (5+) . makinq bosh E = E {^)

and p = p (p) along with r- = - P,( ,{ ) overdetermines the

prof lciri bouevcr, sincr- any one of 9, p, and r- can be

wri-ctnn as a function of the other two (and s) . This wa;-

no-:.:d k v Egqero, Sy vr?rt son, and Kraus- (1953) .	 in their

generalized shock expansion method (a r.umicrical construction

similar to the met hod of characteristics) , they rE^solve thi:3

by averitl.i.ng rzsul.ts a p suminq r- = - P o (c^) and 6 = 8(p) with

those assuming r.- = - Po (a) and p = p (p) . While this seems

som+_wha*_ arbitrary, it can be shown '-hat the correct. result

irr fact lies hGtweerr the two (sea Raycs t; Probstein 19,66, p.

49 S) .	 rg eyor (1957) , on the other hand, implicitly drops th,:,)

assumption p = , p (P) , and uses the solu`ion r- _ - P o (^) and

C-	 E T , which sati.r.3fi g s (17) exactly, but do gs riot satizfv

( 13 ) •

It is more consistent to au p ro<ich t-fie problem in either

of two ways: in equation (17) assume (i) the left hand side

or (ii) the right haiin sirie is Nero. Then solve (17) alonq



^A

vIZ1U. ,, ^^.

17 -

with the remaininq equation, (13) . In case (i)j, the

solution becovDs 9 = A (p) , p = p (^) , and s = s (a() . The

function 6 W 3.s d.4termined by the bouridar:y condition, and

U (P) must b-2 d ,.termin pd by the shock' conditions. It then

ha-Heins -hat over -he rear half of the airfoil, p > p(1)

p (p) cannot he found., since no data is . specified on the rear

shocX. This difficult y does not arise: in approach (ii),

which is the one we adaTt. This trethod requires more work,

but has been found -o b,^ more accurate. it also produces

th( 'same solution at the airfoil as shock expansion theory.

Additional sui;port for -:his choice i:., lon*_ by the fact that

the :factor mul-ipliin q e,( in (17) is in gene al quite small.

Approach (i_) has howevRr b y °n found u,:eful for calculating

the flow b_hind th- tail shock, where the other method is

ir:a7pro pria, e (see a.n p endix B) .

5. Y ulrcrica 1. method

Our approximate soiuti.cn does not

ecauivalently, -he C- equation (14) .

pres ,an- a simple i-era-:ive: method -fo

solution so that it will. satisfy all

conditions.

The a p proximate solution is first

rec-:angula.r grid in tho cjp- p lane, its

9. The same grid noints ' are used in

s .tisfv (17) , or,

Tn this section we

E- correcting the

t};e e q uations and

computed on a

shown in fiqure, s ¢ and

the iteration scheme.

{



- 1.9 -

The• front shocx P(a) is th :refore kept; fix(--.d throughout tha

i".::,a*ion; . This Fixes the normalization of of, so for every

it rsiti on bevoud the oriqi:ir?1 approximation y(Cr) is riot:

qiv• n by (24) and must b^^ found as pert of the solution.

`. hL3 --ilso implies *hat o( =1 will no lonq-nr correspond exactly

to Y= W.

g iven the a pproximat- • solution for 6, p, s, and x in t11 e

CYp -nlane, a corractQd value of r- is coiiipu ted from the (7

hqu<3tion, (14), starting at the shock with the value given

by -hc shock conditions and i_ntckgrating along C-

c}.drac--ristics:

r	
rshock	 sin 2v ds.	 (30)

C-

The new value	 a- t he ,airfoil dQtczrmines a new value

of r+ 'here, since r + = 2F - r-, and e (0,p) is given by tho

boundary condition.	 -his as an initial value, a new _+

can be computed averywhnLe by intagrating (13) along C+

C"L C1: dC16Gri3tiCS :

a
r + (d	 r+(n,p) + j z^ sin 211 z' (a) ad, 	 (31)

O

The _, olntion given by r •-, r + , and , will satisfy (13) , (14) ,

an3 thr hounda.: y condition. however, the new value of

r+ (o<, ^(^)) will no t in general satisfy `he shock conditions,

and hence will imply new va11je.5 of I (a ) , s (co) , and

r-	 (d)) . This furni hcs a new initial value for

in-•a,ratinca (D), which is usDd to start the r.,L:xt iteration.
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In suniu3ry, the stets of tho mc!thod are as follows.

I. Compute approximation, fixing front shock and grid

in o P-plane.

II. Compute r-(ot,P(q) ) from this ;Bock conditions ani

r- (d P) ever y wher• ^ fr 0.5 (3;^)

III. Comp-ate n t=w r+ ('),p)	 wi-h e (!),P)

from the boun gar y 	±:-(,)+ from seep

II.	 Comout-a r+ (d,p)	 from (31) .

IV. Comrutc new valuz-z H = (.* ++r-) /,' and }1 =

P-1 ( (r+-Z:- ) /7) E V :rv'R }i ': 47 .	 -iith th0 n?W 5olut lOn

} t he shock conptlto a n=1w ^(q) and ,; («) from + he

shod; condi+ions. N1,;0 .recompute A (d) and x (d, p) .

V. Chec c fcr conver,7Fnce and either q c to step I1' or

to p and compu-.a y (af, p) .

This scheme has bean i.mplementod using second-order

num: rical iuethods (t apeaoidal rule, etc.) . The details are

given in apperclix C.

The -va luati cn of the integral (30) at ste-p II is --he
k

.Y
most co!nnlicat_d calculation it , the' procedure. In place of

equation (14) vie migh t have integrated (17) , which is

equivai =n, and has tho advantaqe that. 	 is differentiated

only wif7h respect to P . In practice however, this does not

work very well. The itoration procedure does not converge

as quickly, and may no+ converge at all without modification

(see Chonq F Sirovich 19SO) . we attribute this to the fact

that small variations in r- are naturally propa(lat.ed along

the C- charact-4ristics.
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G_Prsl1]__;_an I disc_1__i.on

Tiar, execution of t7 ho numerical nroccdurEs which we have

is he -h rapil and iRP}(1: !'fl aiV^.	 As d resul w,3

hav,-. pe.rforn-l(] a Immbr':r of calculations for sev^-:ral airf.)ils

ovr-!r i range of Plach numbers, rho results pre;3ented in thethe

ficiures are fo g a sylim-tric circular arc airfoil wi-,h

thickness ratio 0. ?5, at upotream Mach numbers 4 0 = 2.5 and

7.5. in sc!n^, figures ':ha	 case 111 0 = 4.0 is also

shown. Theso cas,2s were c,hnsen in Dart for ,110 interestinq

eff scts they ex.liibi'..

The i 4-era4ior, scheme i:: found to cctaverc)t. quite: raUidIv,

Lased on a conpari.son of tihe soliitiarlS- It slIcccsivt>

it,::ra ions. In th? Collowinq table, the maxima (over all

rlri^' i3 oint :;) or thn dif.f,^r<^nc,s in th.- valu^-i of s, 11, a11ci x

ar R. (liven for the case MO=7.5.

1t 8rat 1 U11 Qe	 4; (),',)) Q}1/}1 Q X/x

1 i).1595 13.1170 J. 37()1

2 0.11141 0Q0096 ().1221

3 0. 0017 0.0112

4 2 O.t)oo6 0.0017

5 ).3)J1 J.J3,)3 ;).0009

The grea—ps- tlift n t+~nc s are in x and occur within a few

grit >~oin_s of of =1, where x400. T1,r_ errors in x are smaller

closer: to the airfoil. For thinner airfoils and/o r lower
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;,ach r.urh( ra, fewer iterations are required for the same

accuracy. in the case of a 1:)% thick parabolic arc airfoil,

or exam p in, even at 4 1 0 =10 the difference bc-wcen the

approxi:rat.e and exact solutions is las.a than on r? percent in

e and N and six per cen- in x. in such a ca=3 -here is

lit-:lc rras cn -c qo bevond the approximate: solution.

The cas— 0 =2.5 is li.:cussed in Holt (1 '77) . Figure 3

contain=i a ccmparison of the leading shock when computad by

our method and the EVLi method. Tho small difference is

probahl y attr.ibutabl ,a to cooyi.nt.1 errors.	 In addition w-^

indicate our approxiip -i.t;o theory and that which emerges from

a va lrian% of shock =,xr3l zion -heory (--he 	 and thy: BVL^

curve aro taken .from H014, p.77) . In this case, our

approximato solution is infl istinjuishable from the exact

solu*ion.

: ;e continu-a the prc q̂ , ntation of this case by indicating

in ticaure 4 a portion of tn:=! rxrid in the a(p-pllnne us•:?d in.

the num-F!ri.cal inte g ration.	 (The increment. 6 0^ between the

streamline shown is 0.1; the, computations were done with

Th;. trianqular region corresponds to the :flow

behind --bc tail shock (see api) endix R).	 Figiire 5 gives the

entLony s(at) in the region between the front and tail

shocks, and s3 (01) in the region behind the tail shock. The

dr-.flection ar,g1Q e is rlc--:Pd vF_sus a( in figure C on each

of the C + charact:eristics shown in figure 4. A

specification of A in }ho region b rahind the tail n--Bock is

deemed unnecessary since it is very nearly zero everywhere

t:

I_



N	 1

- 22 -

( I P1 0. 005) . Figure 7 contains thn variation of r- varsus

on each strtzamlinA of figure 4, rinally, in figure 9 ti?

trc^aml.ne:a, characteristics, and .--hock wavns are showr

transforme•1 hawk to the xy-plane. `rlics fz fiqures completely

determinc -ho solution. In particulaL, corresponding to any

point (x, y) of the physical plane we can determine the

coordinates ( 0?,	 Th<= entropy s is ttrm found from fiyuro

5 and the dcf7. ction tamil-r- A from figure 6. The, lattar and

r- from figure 7 a:4torminc• the Pran(ltl atigl.: P (p) . 	 X111

o-hor flew propertio.,; then follow.

rcr corepariaon w,- g ive in fiqu ,:o- 9-13 similar data for

th* sane profile ai- ;'1 0 =7.5.	 In this cask: 191<0.02 behini

the tai] srcck.

:+e begi n our di-cti:3, loo of ':hesA results by consid°)rinq

th .° Limit x -9 00 .	 Far bchint3 the airfoil th- pressure

becomes constant, p	 1, and as a conseg tie rice H -)- 0. it

then follo ,.ls from the equation of state that

a 2	 eY p[- (t '1) s ; (0 ) /^L

whcrc s 3 (o() is (liver. either by figure 5 or tigure 10. from

(1) , we can then compu*e thn velocity a at infinity. This

is shcwn in figure 14 Eor Ala = 2.5, 7.5, and th,,

intnrmcdiate case 11 0 = 11. 0 (same. profile) . 	 As a result of

the non-uniform entrop y , the, flow at infinity l ► as a

vorticity distribution;

Another feature cf interest is the entropy variation

along the tail shock (Eigures 5 and 10) . This has a
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two-scab. xan. pezrance, especially at th higher Mach number,

which shows a very rapid decreasa iii 	 rrn g th in ~he initial

per ior: Of ttQ shock. The slower variation in enrropy

.follows that induc>-:d b y the front shock. Looking at fi-3ur3

13, we r-ee that thn strf:.^areli.nes sprcad apart rapidly as thw

flow passes the inidcho= ,l pozition. ThP flow inclination at

th-- tail, shock ther g fotr: decreases rapidly, which results in

a corresponding dr?crease in shock s+renyth.

Anctber important etfect is also at work in this region.

The i1as, which is cc'.iiT.`;.'?:3sed at tfle front shock, in

followin(x the profile: east the mi flchord experiences a rapid

expan--ion, which i., sufficiently ,-- roriq ao that the .local

t]a{ rl number at thr^ trailing cdcle exceeds th.c upstr-aam valua

(f = 5.93 for the '10 = 7., 5 casfl . Sir-cc jz is swall, the

lar ti, negative val.uF^ of e on the after part of the airfoil

cau_-:z :s -lie principal charac-:eristics to !lave 11cga'ive

slopcsc , so that wavf---a OEigillatillg there must intersect th,=

tail chock near the airfoil. This quic lKly cuts off the

recovery prorLas. A,-, a resul, the Mach number along the

tail :hock fali. off rapidl y , which, autiments the rapid

decease in st,-entith of 7:he tail shock. Por the case

r1 c, = 7.5 the '9ach number alone the . shock even falls below

7.5.

A feature wti ich is 3omewlia- difficult to perceive from

figures S and 13 is that the tail shoe;; angle is not

monotcnic. In figure 15 the variation of the slope of tho

tail shock Is giv en for *:he `1l -,::e casos we havr: discussed.

w
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F or <4;:ch Cv3c thh =hock amllo	 oil leavinri the

trailin g c1,10.	 (This r^sult has been v-^rifi.ed in(lepc,, nd .• ntly

by Jailer C, Town-,: ond 1r79, l ir-An 4 n different numerical

me tj. locz Ievelop d b y %l nu•?1 n. g alas.) This is cov-^rary -o

what is obscr y-^d f,)r lower mach numbers or thinnor hodi3s.

ne have C:: ran that the anr11.-, of thx= inc:id--r.t flow 1-:crmaes

alonq +he	 it	 '.each number to the left of -.lie

shocx were constant, this would pu die: a dr?crease in shock

.angle. The dec:roaz^ in 11:ach numbor along tire- ,;hock tends to

have ±he oppo.=i e e •tec- liowev pr, to increase -:he  !hock

an-11h.	 Tn then, c^z. cs, near th-2 trailirrq edge the

dc:creasi.nq r.lcw .11(710 0mins-r:s. 	 "or hicli^ Mach numbers thQ

shack an g le is more	 on tho flow angle than oil tiv

Aach number, as canbc. seen from tlrc fact that the shoe

polars for	 Mach numbers aoproach a limitin g carve

as M -a oo (see ^. q. Lienmann & ^oshko 1 q 57, p. 87) .	 For

low''-, r Mach numa^ rs or thine=:r airfoils the :)ftect of

drezrasinq Ma ca number do!^ina-es the effoc- or decreasinq

flow angle.

I.eturninq t,3 fiq urn, 15 we also .s p ,^ that roar'	 . = 7.5 t.h

sloe: unfq i rgoe:, a f.cond oscillation in which it rises lbov.:

-he 'Inch angl<:? at infini-y. This is explained by -he rapid

fall-otf of Mach number along the shock, below its; value at

infini-v. it final it:^m of note in figure 15 is that for

.1 0 = '1.5 *h r- shock olopl? actually starts off wi-h a value

which is g r.cater than at infinity. The expansion proce=ss

alon g the profile nrocluc :c a rrlativsl y hiclh each number at
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t),c -.railing r . l(tc, nut it is not gro;a t enough to bring the

loo(-- t:.low + h:: uns . rP.i,n valuCS.

Th( uressura di^sribution bohind the airfoil is

inzorestinj. kn fiqurQs 10 and 17 wt :tihow the pre-szu~,

contours l)chin.j tho tail shock an'i ~hi values of loq p on

the x-axis r:cr x>1, for the ca es M o = 2.5 and 7.5.The

on -ha Leisr part of th ,-, airfoil is so low that, in

spi-c of }hr: high shock	 Zr ttx ; trailing edge, tha3

pr ,^asurt? jutn^; tbrouah the shock clo y s not briuq N up to the

equilibrium pr',?vsurch 'n = l, hh re is a rapid prf s: urc

incroas p i:rTRiiatrly Iv3hir.l !-he rallinc izdge, in which p

ir^cr^aaes -ihovtzi t-ha equilibrium value, reachincl a maximu'a

aboll- onn chcri	 o it.	 The rnt'urn y o taguilibri.um £Toni

this point is v,,-ry gralual. 'rhe to t al variation in prc.;3ur-:

behind the :ail ,-,hocks is quite small compar eui to that ilcnq

• h airfoil sur .ace (in y,:rms of loo p, about 3'', a:

and 1'1i at '?o ='1 . 5) .

:;,^vt;ral other f ,, aturea cat the calculations also merit

mc-:r,--ior,.	 'lost llor.a.blr- Ix--r;-taps is ''ho surf>rising constancy

of the dreflGct..ion a,r.gl^ on th principal characteristics.

Th y: variation in A is almos t. uncl-atectah1 F in fiqure 6 anti,

as L--iuur,c 11 indicates, the most serious dlc4 pasture occurs

nC. ar the trailing -0-Te, wh p re it is about 1J, in the worry

case, AS mentioned already, e. = o is an c>xcellent

approxi•naYicn throughout the re(jion behind the tail shock.

A relatsd p boncirenor is thF nsar- ,*tr.aiuhtn' sc of th-

principal c haracteri5-: ics. This howev:4r does no g remain
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--ru g- in the rcqion behind -he airfoil.

:4Q are also in a position to examiri the ba:;ic assumption

of shcck expansion -heory, th a T r- is cons tant on

str. arlincs. from ^?<luation (17) we see that this condition

is closely r/^la*.d to the constancy of A on principal

characteristics. As both fiqurss 7 and 12 indicate, this is

a	 a.;sumption, al hough oomewhat: remarkably it is

better at the airfoil than in 	 neighborhood. In both

ca g es this assumption is far less jatisfaccory behind the

*ail Shock. The rapid down q IroKi of .he r- curves also

indicat Rs a large value of 8,( , although E itself remains

quite small.

This work was supported by the 'rational Aeronau-:ics and

S p ace Administration under NASA Grant no. -,NaG 1617.

ApT,endix_A: Case of an_ arbitrary_a,2

For an arbi,rar y tja.s, -he equations cf motion in

charactcria tic form can he written (Hayes F, Probst-ein 19066,

p. 484)

ds = 3 on dy/dx = *_an 6
	

(Al)

de	 i dp = +1	 on	 dv/dx = ta.n (e ±fit)
	

(A2)

where	 = p	 pqa	 n

	

o / (po a l?I-n N)	 We can consider I to be ao	 •

NO
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function of p and S. fay introducinq the variables

LJ (1), s) = I f (p, s) d 	 and A(p, ,) = 3cJ(p, s) /as,

whic h arc dcfined so that dW = jdp + •S ls, (A2) ca.n be

written

tits ± do = ± Als on dy/d.x = tan ((- t)t)	 (A3)

If W ant] Slam now regarded as func-ions of p and s, (Al)

and (±3) are ti► ree equations in three unknowns: •e, 11, and s.

Equations (3) and (4) are a special case of (113) in which

= F Q) and 1L= (sin' 2µ) /21^.

The !transformation -o of coordinates goes through for the

mc4t rar- as before.	 F.qua*.ions (12)-(14) in the general

case becom.a

sp=^^

a	 a
(a + w a^) (F - IJ _ - SL s' (^!)

Whcre w is Still giVOM by (15) . The counterpart of (19) is

x
) _ L + ((i+ta)p cot )i + (e+)i)^ t:an ( R +p)

xd

This squati.on can in nrincinl- be solved in the sane manner

as ( 1 0 ), but we do riot ha y s an explicit integral of the

sim p le form

The assumpt ion C-a = 0 in the g •̂ ncral case implies
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(8- W )^ = 0 or E-W = - Wo (q) . The rPsultinrt a1) pro ximation

can be xp c'etl to b:? valid at least in ca.,;es in which --ho

tl :havior of t'h-z qas does not differ to,) greatly from that of

a PC_-frct ya s with con rant specific heat: and 1^ = 1.4. 1 

ha.: boon shown (se_ Haves F Probs twin 1966, §7.2)  • hat shock

ex p ansion theory tends to lose accuracy if * is allowed to

ar, p rc,ach 1.

;ArnhnOiy B: Tail shcck_fo__,a mym_ne`ric airfoil

In the gereral ca ge, the solutions in the u pper anti lower

Half p lanes can be com p uted indwpsndarntly, up to the

app aranc - of the tail shocks. Tho flows from the top and

L, ottom itzteracL behind -he airfoil, which complicates th>-:

computation cf thi tail shock an !] the .flow behind them.

Thft u pper and lower regions behind the airfoil are: separated

by i contact discontinuity, or slipstream, whose location is

unknown a priori. Across the sli pstream e and p are

co 111-:inuous, bui, the- othor variables juatp. T11is coin plication

cloes not arisa in tEe case_- of an airfoil symmetric with

=esDec;- to -:ho x-axis; the =lipstream coincides wi-h the

x-axis, an] can be considercd .a ri g id boundary. The probl,^ m

is s-iJ.1, quite different than the f_'on` shock problem,

because the flow upst,^am of 4-.he tail shock is not uniform.

T.hc- transfo.Lmation to c? Vcoordinates behind the tail

shock can be chosen differently than that ahead of it. In

..wit'
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particular, it is more proper to regard the C-

charact.eristi.cs as :tim principal characteristics, since the

C+ ,rives arc only produced as reflections or the C- wavers,

which originate at the tail shock, (sEe figure 1) . on the

other nand, we , have found that for the iteration procedure

it i.s better to take, the C+ characteristics as the.

P-coordinates, because this has the. effect of putting more

points near th:? trailina ed g e, where the most. rapid

variation in the solution occurs. However, the -approximate

solution derived below is more accurate if the C-

charactsriFti.ca are takria as 	 = constant. Modif:icati,ons

for the use: of the C- characteristics as coordinates in

place o,f the C+ characteristics are straightforward.

The normalizations of a and P behind the tail shock are
alro differsnt than those ahead of it. it. is natural to

kee p of constant on streamlines as they cross the shock.

Also, rather than set P= x (0,A), wa can normalize P so that

*_ho region x>1 is mapped into a fini t e region in the

010-plane. This was done by setting P 3 (d) = 1 + a 12,

produeinq the configurations shown in figures 4 and 9.

The calculation of the tail shock Q Z (d) can be done as

follows. We assume that the solution s for t3 (o(q) , Ii (d,p) ,

and x (d,p) are known in the neighborhood of r2 (a) . Equation

(26) bolds at p,(a) as well as at p(a) , and siric.a in the

former case x,( and xP are known functions, we can write (26)

as an ordinary dif-orential equation for 2(00
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tan I., - tan (Pt)i) xo(
Piz	

ran '11 - tan a	 xP 	 p= ^z(a)

A:: yet 12(*() is undetermined, If we specify one variable,

s pay e, !us'- *o the right of the sho ck [ i.e, at	 F3(0() 1

th en we can sole,? the shock conditions for ^Z (q) , and solve_

(P.1) . This enables us to set up an iteration procPduro

similar: to that used for the front flow.

The approxiina}a sol liricn used for -lie flow over the

airfoil .cannot be conveniently employed for the flow behind

the -ail shock, because the nonuI7ntorm flow to its l.aft

mak as it impos:;ible to calculate p o (q! ) and s (q) a priori for

use in (29) • Therefor ,-- we use tlii simpler of the

app—.oximatio.ns qiver in section 4: 6 = °3 (P) , p = p3

a 1(l s = s 3 (d) .	 All t]-e characteri stics intersect the

x-axis, where 8 = 0, so R3 (p) = 0, and hence 6 = 0

everywhere. In particular 6 = 0 at P = P3 (0 1 ) . We can

therefore scl y :^ for P ? (a) as in the pre.vi.ous paragraph, app

al.,:o compute all other (juantities on troth sides of the

shock.	 This 6e1-1ermin ,;? s 1) 3 (p) and s 3 (p) .

The computation of the transforma t ion from c13- to

xy-coordinates is also somewhat different. Denoting the

known value x (c(, pZ (a) ) by x z (.1) , we must have

x (d, p3 (.^) ) =x 2 (,j) , which implies

x2 ( CO i xC( (d, 3 (4) ) + p3 (at) x.^(ot, P 3 ( d )) •	 (i32)

An equation of the form (26) also holds at P = P3 (Cl :
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J	 x., ( qf.	 (d)) + b3 (^() x	 P3 (^)) •
	 (,33)

If we cli.minate xp between these two, ;;ubs^itu-e

xa = A 3 	 (where ws recall Q=a- A cos(C-+)j) 1, and solve

for A3 (d) , w	 et

x' (d)	 tan Inz (ot) - tan A

	

A 3 ta) -	 Z
	

(84)

0 ( d 03 (d)) tan (6+)^) - tan	
r = P3 (d)

from khi.ch we can determine

^l

	

x(d',	 C13	 +	 j A3 (6)Q((F,P) dQ 	 (L5)

cis (p)

wh p =e 0(3 (P) denotes the inverse of P
3 

(a) .	 similar

cgtia-ion fcl-lows for y(C?,P).

The iteration scheme proceeds -a sential.ly as be-tore.

Given r- (ct, 
P3 

(o() ) F rom the shock conditions, wz integrate

(30) alonq r_- char:3cteri.sti.cs clown to the Slipstrea,.tn C(=O.

Then we reset r + (0) _ -r- (0	 and integrate (31) upwards

to R 3 (a) .	 The new r + ana r- define . a new e (cl, P 3 (a) ) , which

is used to solve for a. new shock P. (cl) and new function:

12 (d) , s 3 (q) , and r- (^. ^, 3 (a)) , with which we snarl the next

iteration.

A prrndix_C__Dc-tails of_numc-r ica l mpthod

This apr,e.ndix contains the details of each step of the

iteration scheiae described in section 5, as presently
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impl::xetlte-l.

St q.2_T_ iie take a uniform grid in of with N+1 paints

°li = i,&a (i=^), 1 ,... ,N) , where AQ( = 1/N.	 Over the front hal(

of The airfoil the P arid points are taken to be PS _ P(aj )

where Vey) is the equation of the shock as

kliv* n by the approximate solution. Over the rear half of

the airfoil tha P grid points are + akca evenly spaced.

Th r= approximate solution in thn ap-plane requires the

solution of th ,. ordinary differential. equation (29) for each

fj . Tha.S was done by the improved uuler method, which for

the goner.al equation 015/dt: =	 is given by

0t
I	 53k + 

-- 1 T ( : k I 5k ) + 4( t k+1 15k +Q	15k))	 (Cl)
2

Tho approximat-a- solution is completed by solving the

ins .gral equation (27) for A(4) and evaluating x and y from

(21) and (22) . Equation (27) is linear, and can be readily

solved by the trapezoidal rule: the inteqral is

approximated by the appropyiato sum, and the resultinq

equation is solved for A (c(,) in terms of n (c(o ) , n (^,) ,... ,

A ( q( 	 ) . The derivatives Q p( ejj q^) appearing i.n the

integral are evaluated numerically using a three point

scheme on the unevenP mesh. The inreyral_: for x and V,

(21) and (22), are computed by the trapezoidal rule.

Stcp 3I_ We can write (14) as

If sin 2112)x rls on	 C	 d ig/doe = w	 (C2)



r

I	 ^.
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where w is g iven by (15). In computing w, xp must be

evalua+;,^d numerically, but x,4 is given analytically by (20),

Tea C- characteristic through the point. (•e,p) is drawn back

to intersect the line segment between ( q ,P-op) and (a+da, p)

at the point {a,P) = (0(+Vbo(,P+ ( y -1)bp) . To find this point

the equaticn dp/dog = w is integrated ,from a to Y, using the

iin p rovc-i Euler method (Cl) again, with the modification that

a first approximation to w(a,^) mus be Bound by

interpclaticn. We take

-3 _ [ 1 _ w (o/ ,p) OaQL 1-1

W - (1-y ) w'(d'P-DP) + V w (01+ bet,	 2

	

•	 i t 4'.A ♦ t	 Y	
...'. t f

and th-,ti redefine V by

f

This value: is correct to Second order and is used -o

interpolate the value

anti, similarly, )1 and s	 The value of r- (a,P) is ~hen

computed by the trapezoidal rule:

1

r - --[ sin 7.)i (d, p) + sin 2)i ][ s (off) -s ].
4'

somewhat simple= r method can be used if jq,p) is tw^) or

more c:ri 1d points from the shock. We write (14) as

Nf
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rel + W5 _ - 2aF sin 211 s' (a) ,

q

evaluating w and p a: (d,p) , and rsplacirg ra and r^ by

thr;-- -point on^^ sided riifferences emFloyinq points upward

and to the left of (q►,p), respectively. Then we solve for

S_ p_p._1IT_ Equation (13) can be integrated directly.

Aqain usin q th ,-3 trripezoidal rule, we have

(C3)

[sin 2N. (ot,p) + sin 2N (d+Od,p) ][s (eY+bd) -s ( ct) .J•

1V_ While it is possible in theory to solve -he

shock rrlation.i given any one quantity just_ to the right of

the shock, in practice it is difficult given r + or r-.

Tt1^rcfore we u3e the rrr, w e (cj,p) c omputed from r+ and r-, and

solve the shock relations for	 s (a') , and ^^ (a,^(a) ) as

tune ,Jons of c (d,^(^) } . Then r-	 is redefined from

thes^-- values -o start s°-,gip II.

The computations of A (cf) and x (a, p) are done in the same:

way as in the approximate solution. It is not necessary to

compute y (cl,P) until the final solution i., obtained, since

only x anpaars in the equations.

St ep V. To check for convergence, we compare 9, µ, and x

,a- all grid points between successive iterations, and stop

when ~tie maximum dif£orence is less -han some given

tol::rance.



- 35.

nefer.?nces

Adamson, T. C. 1968 J. Fluid_1_1ech. 34, 735.

Babenko, K. T., Voskresenskiy, G. P., Lyubimov, A. N.

;;us3nov, V. V. 196E Thr;2g-dimensional flow of._ ideal._oa

nr^=t_smoc^tn bo_lics. :NASA Tech. T.r,ansl. -380.

Chouy, T. I3. F, Sirovich, L. 1980 To appear in Ph_vs__Fl.uid_.

Courant, F. F, Friedrichs, K. C. 1948 Su personic Flow and

Shock 'laves. Interscience.

EcloYrs, A. J. , Svvertson, C. A. & Kraus, S. 1953 NAC A .Feoo__

no. 1123.

Epstein, P. S. 1931 Proc`_ Nat. _Acad._Sci_ 1,x7, 532.

Friedrichs, K. C. 10 48 COMM. Pure ADP1. Math_ 1, 211.M

Hays, ''I. H. V, uiob stain,	 F. 1966 HVT)r:rSOnic r1ow Th ory,

vol. I. Academic Press.

aol , gym. 1;77dump_i._cal_'^enhods_in_Tluicl Dynamic_.

Sr.ringcr-Verlaq.

Li e-p nann, M. W. & I^osliko, 1957	 _of_Gasdynamic_.

Wilev.

Lighthi.11, 11. J. 1960 Iii. lh{_r_.Aorroxima^i_ons in A(-rod_vnami.c

The-o__v. Pri.ncQton University Press.

Jones, 0. G. 1963 J._Fluin_^]E_ch. 17, 506.

y ahonv, J. J. 1955 J_ 11nro._S ci. 22, 673.

Mahony, J. J. 9 Skew. P. R. 1 1)55 4us-r._Aero. Res. _Lab_,

Ae r o. '_do t-E? 147.

Meyer,	 F. 1957 0__Annl. Math. 14, 433.

Meyer, R. E. 196J Theory of characteristics in inviscid qas

w,



C;11'LIN'

6y2.aMicc;, jjanclhuc►:_der Pti_v5Fjk, Vol. IX. Springer-Vcrlaq.

Sirovich, I. F ChOT)a, T. 11. 19PO To a p pear in Ph=j,_ri»id_.
"_`ay]+ar, ^'. D., Nciafa, F.F, lasson, R. S. 1972 J__Comny_Phv__

C, 94.M
Townsend, J, C. 1979 Private communication.

,49
IS



L	 r

[	 r a

i

- .37 -

IiqurF 1. Gtipersonic flow past an airfoil: heavy lines

dcno+ta xhoc k w=1v os; solid lin•ns Olsno ,e s -rc lmlin*^o and

C+ charactaristics; dashed lines do-note C-

charac`erist.ici.

Fiqurc- 2. Jump_, in cntropy s and Pi-mane invariant r- across

a shock wave as a function of e 2 ( 6 1 = 0) at various

Mach, nuffbers.	 , As; -- - -,Ar-.

Fikitl_e ?. Front shock for slow past a 25,; circular.- arc

profile al. 4 0 =2.5. -----, BVIR me*_hod; ----, shock

^axFansion mz: thod (both from Holt, 1577);	 presant

approxima-a and axac- mn?hods.

Fiqurc 4. M o =2.5. ?draw finl(l in afp-plane.

Figur q 5. m.=2.5. Entropy :s (ct() ( 	 ) in rcyion betwR- n

front ana tail shock..3, and s 3 (o() (----) in I:e(lion Lehind

tail shock.

Fiqurc- 6. 11, = 2.5. Flow angle 6 vs. of on each C+

charac-sri.jti.c of figura 4.

Ii,;ure. 7. M,=2.5. Riomann invariant r- vs. 
f 

on each

s'rzamline of f'.i.yure 4.

Fiqurc q . % =2.5. Flow field in xy-plane. 'The s4reamlin,^!s

and r+ characteristics corresnor.d to - he idles of =

constant and P= constant, respectively, in figure 11.

Fi q urc Q. M,=7.5. Flow field in elp - plans.

Fiqure 10. '^. 0 =7.5. Entropy r; (o() ( 	 ) in region between

front and tail shocks, and s 3 (a^) (----) in region behind
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tail shock.

Fiqur r- 11. 19 0 =7. 5. Flow ingl ,3 6 vs. of On each C+

charactcrist.ic of fi4uro %

Figure 12. !^ 0 =7. 5. riemar.n invariant r- vs. r on each

streamline of tiqure 9.

riqurc 13. M =7.5. Flow field in xy-plane. Tho streamlines

an d C+ ctaracti?ristics corresnond to the lilies of =

constan- and P = constant, respFctively, in. figure 9.

Fi.Ture 14. Velocit y profilt<s Far behind airfoil for 1 0 =

2.5, 4. 0, and 7.5.	 Das;,:;d lines denote asymptotic

V.311i--s %100

Fi qure 15. Tail shock slope tan l, , vs. of for Mo = 2. 5, 4. 0,

and 7.5. Dashed lines are asymptotic values, tan µ,.

Figure. 16.^Mo =2.5. Upper: pressure contours behind tail

shock; log p = -0.07(0.01)0 and 0 (0.001) 0.01. Lower:

log p vs. x on x-axis.

Figure 17. 1 0 =7.5. Upper: pressure contours behind tail

shock; log p	 -0. 9 (0. 1) 0. 1 and 0.1(0.02)0.28.	 Lower:

lov D vs. x on x-axis.
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