NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-CR-162554) APFROXIMATE AND EXACT
 N80-14814 NOMERICAL INTEGRATION OF THE GAS DYNAMIC EQUATIONS (BLOWn Dniv.) 57 p HC AO4/MF AOV

Approximate and exact numerical in"egrazion of the qas dynamic equations

Timothy S. Lewis and Lawrence Sirovich Divisior of Applied Nathematics Prown University, Providence, Rhode Island 02912

```
Rerort prepared for NASA Langley Fesearch Center under
    NASA Grant no. NSG 1617
```


Abstract

Two-djmensional steary supersonic flow over an airfoil is considered. A highly accurate approximation and a new, rapialy converqent numerical procedure partiy based on it are developed. Examplos for a symmetric airfoil over a ranqe of mach numbers are given. Several interesting features are found in the calculation of the tail shock and the flow behind the airfoil.

1._IntEoduction

This paper contains an investiqation of two-dimensional supersonic gas dynamic flows. Although the final step in our investigation is numerical, we use methods which incorforate our analytical and physical know adge of such flows. The approach is well-suitea both for numerical inteqration and for the inserpretation of the resulting flow phenorena. In the present investiqation, several new or liztle-known effects concernirg the tail shock and flow
 these is reserved for section 6. A preliminary version of this approach for the case of one-dimensional unsteady flow has already bean reported (Sirovich \& Chong 1980, Chong \& Sirovich 1980).

For problems in which the shock waves are weak, variaticns in entropy and one Riemann invariant are thicd-order eftects, and the solution is approximately given by a simple wave, or prandtl-Meyer expansion (friedrichs. 194月; see Lighthill 1950 for coraections and extensions). In fact the numexical change in the rieman invaviant is significantly smaller than that in entropy (section 3). This suqgests that a larger class of flows can be viewed as the interaction of a simple wave and an entropy variation, which in turn suggests that streanlines and principal characteristics be used as coordinates. Adamson (1968) has used a similar coordinate syssem in another context.
$-2=$

The usefulness of this zeansformation is also relatea to shock sxpansion theory, a method Eor calculating sureace Eressures which yoes back to Epstain (1931). Jt depenàs upon the fact that reflections of the outgoing waves on the principal characteristics are weak and tend to cancel each other (1ayos \& Pabssein 1966. Mahony 1955). Shock expansion theory has been extended to include computation of the full fluw Eield (Eqgers. Syvertson of Kraus 1953, Heyer 1957). Jones (1963), in another approach, bridges shock expansion theory and simple wave theory by considering slowly varying perturbations of the latier our approximate solution is closely felated to shock expansion theory.

We use the approximate solution as the first step of an iterative numerical method to compute the exact solution. This frocedure is quito distinct from current numerical nethods tor this type of problem. For the most part such approaches apply a varisty of differencing schemes to the yas dypamic equations in thei= standard form (for a comparison of several methons see Tavlor, N defo fosmon 107?). Imnjemantation ig then relatively simple, but may reauira many mesh points ann/or be subject to restrictive stability criteria. Methods which do not cxplicitly fit shock waves also tend to have difficulty with them, pronucing oscillations near or diffusiny the aiscontinuity. A more powerful method which fits the shock wave explicitly is the qVLr method (Babenko, et al. 1966, Holt 1979). This is a Eather undielfy method, which is actually intended for
more complicatea problems than that dealt with here. The method of characteristics (see Lieprann fi Roshko 1957, ch. 12), to which ưr method is more closely related, has aiso been found in practice to be unuieldy and time-consuming. Comparisons of computation time are difticult to make, because of the many variables involved, but the procedure we present should compare favorably with others available. The approximate sclution is probably sufficiently accuraさe in many instances, and even in the worst cases we have calculated only about three or four jterations are required to achieve an accuracy of one percent throuyhout the flow fiela.
2.- Formulation_of_ncoblem

Ge consider the situation shown in fiqure 1 , in which a uniform flow of Mach number $M_{0}>1$ is incident upon a two-dimensional symmetric airfoil. It is assumed that there are attached shocks at the leading and trailing edges, and that the flow remains supersonic everywhere. we discuss the flow in the upper half plane ahead of the tail shock. The tail shock and the flow behind it are treated in appendix B. If the airfoil is not symmetric, the flow fields above and below $i t$ can each be computed by the methods described here, independently, up to the appearance of the tail shocks.

The coordinates x and y are scaled by the airfoil lenath;
the pressure E and the density ρ by their upstrean valuns Po and p_{0}; the velocity $(u, v)=(4 \cos \in, q \sin 6)$ and the sound speed a by the u bstream sound speed a_{o}; and the entropy s, which is set to zero upstream, by the qas consean* E. he consider a porfect gas with constant. specific heazs $c_{v}=R /(\psi-1)$ and $c_{p}=\gamma c_{v}$, for which the equation of state is $D=\rho^{\boldsymbol{t}} \mathrm{axp}[(t-1) \leq]$ and the sound speed is aiven by ar $=$ p/p. The calculations here were done for $r=1.4$. Modifications for the case of a gas with a general eguation of state are putlined in Appendix n.

The equations of inviscir two-limeneional steady flow are convenjantly writen in characteristic forn with the entropy s, the flow anfle θ, and the mach angle $p=\sin ^{-1}(1 / M)$ (where " $=\mathrm{q} / \mathrm{a}$ is tho local dach number) as dependent variatlos. All other plysical guantities can be obtainea from these and lernoullits oguation

$$
\begin{equation*}
a^{2}+\frac{y-1}{2} q^{2}=1+\frac{y-1}{2} n_{0}^{2} \tag{1}
\end{equation*}
$$

The fouations of motion are (veyer 1960, p. 273)

$$
\begin{gather*}
d s=0 \text { on streamlines: } \frac{d y}{d x}=\tan \theta, \\
1(\epsilon+p(\mu))=, \frac{1}{2 z} \leq \sin 2 p d s \text { on } c+: \frac{d y}{d x}=\tan (\theta+\mu), \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
d(E-E(\mu))=-\frac{1}{2 y^{2}} \sin 2 \beta d s \quad \text { on } c^{-}: \frac{d y}{d x}=\tan (\theta-\mu) \tag{4}
\end{equation*}
$$

where $E(p)$ is fiven by

$$
P(\mu)=\sqrt{\lambda} \tan ^{-1}(\sqrt{\lambda} \tan \beta)-\mu, \quad \lambda=(\gamma+1) /(z-1)
$$

The streamines and the C^{+}and G^{*} characteqistics are shown in Eiqure 1. The quantities $r^{ \pm}=\theta \pm F(f)$ are called the Ricman invariants. Another useful form of (3) and (4) is

$$
\begin{equation*}
d e \pm \frac{1}{2 z^{2}} \sin 2 \mu \frac{d p}{p}=0 \text { on } c^{ \pm}: \frac{d y}{d x}=\tan (E \pm \mu) \text {. } \tag{5}
\end{equation*}
$$

The appronriate boundary condition at the airfoil is

$$
\begin{equation*}
\tan \epsilon=E^{\prime}(x) \text { on } y=f(x) \tag{6}
\end{equation*}
$$

In addition, the solytion far away from the airfojil ($y \rightarrow \pm \infty$) must approach the upstream conditions $\theta=0, \mu=\mu_{0}$ and $s=0$. The jumps in \in, p, and s across the shocks aze governef by the Rankine-Hufoniot condizions (Ijepmann E Roshko 1957, p. 85). If we denote the shock angle by η, and flow quantities on either side of the shock by suhscripts 1 and 2 , these conditions can be written

$$
\begin{equation*}
\tan \left(\epsilon_{2}-\epsilon_{1}\right)=\frac{1}{\tan \left(\eta-\epsilon_{1}\right)} \frac{\left(M_{1}^{2}-1\right) \tan 2\left(\eta-\epsilon_{1}\right)-1}{\left(1+\frac{\gamma+1}{2} M_{1}^{2}\right)+\left(1+\frac{\gamma-1}{2} M_{1}^{2}\right) \tan ^{2}\left(\eta-\epsilon_{1}\right)}, \tag{7}
\end{equation*}
$$

$$
\begin{gather*}
\left(\frac{-6-}{\left.\frac{a_{2}}{a_{1}}\right)^{2}=(1+z) \frac{1+\frac{y-1}{2 y} z}{1+\frac{\gamma+1}{2 y} z},}\right. \\
s_{2}-s_{1}=\frac{1}{y-1}\left[\log (1+7)+\gamma \operatorname{loq} \frac{1+\frac{\gamma-1}{2 y} z}{1+\frac{z^{\prime}+1}{2 \gamma} z}\right] \tag{3}
\end{gather*}
$$

where the shock strenqth $z=\left(p_{2}-p_{1}\right) / p_{1}$ is qiven by

$$
\begin{equation*}
z=\frac{2 \gamma}{\gamma+1}\left[y_{1} \sin 2\left(\eta-\theta_{1}\right)-1\right] . \tag{10}
\end{equation*}
$$

Equation (?) deternines the jume in p, since az can be wri.eten as a function of M or p using (1).

ncross a shock wave the entropy and one of the piemann invariants (r- for η positive, r^{+}for η negative) change only at thind order in the shock strendth. Tis can be shown $k y$ faylor series expansions (or see couraut e Friedrichs 194; , Section 138). In figure 2 the jumps in s
 actlection andle ϵ_{2} for vazious Mach numbers n_{1}. without loss of qensrality we can set $\epsilon_{1}=0$ and take ϵ_{2}, and hence η,
posi=iv?. The shock streng h is of the same order as the deflection angle, so for small θ_{2}, the curves approach straiqht. lines of slong three. For larger values of ϵ_{2}, the ratas of incroase of Δs and Δr^{-}tond to drop off somewhat.

For a weak shock wave Δs and $\Delta r-$ can be considered neqligible comparat $=0$, say, Δx^{+}, which is a first-order quantity. These valuns also proviar estimates for the variation in s and r^{-}throughout the flow field. This is obvious in the case of s, since it is constant on stefamlince. In fact the same is very nearly taue of r- for a wide range of conditions. mhis will be seen in connection with. shock expansion theory later on. Therefore, for a weak shock wavo s and r- ara nearly constan= cverywhere, and the solution is approximately givan by a simple wave on the $C+$, or principal, characteristics (see section 4).

A secont feature of interest in figure 2 is that for any given Mach number and deflection angle the jump in r- is siqnificantly zilaller than that in s At $M_{1}=5$ and $\Theta_{2}=0.2$, for examplu, $\Delta s=0.19$ while Δr is only 0.03. Therefore, for weak to moderate strength shock waves, tho Elow in the upper half plane can bo regarded as primawily an interaction between the simple wave and an entropy va=iation, with r playing only a small role.

With this in mind we introduce a coondinate system (α, β) consisting of the the streamlines, $\alpha=$ constant, and the principal $\left(C^{+}\right)$characteristics, $\beta=$ constant. By definition, α and β must satisfy

$$
\begin{equation*}
\left.\left.\alpha_{x}+\alpha_{y} \tan \theta=1\right), \quad \beta_{x}+\beta_{y} \tan (\theta+\mu)=1\right) \tag{11}
\end{equation*}
$$

since any function of α will satisfy the first equation nad any function of β will satisty the secona, two comaitions will Ee required later to fix the transtormations.

In the new coordinate system (2) becones

$$
\begin{equation*}
s_{\beta}=0 \tag{12}
\end{equation*}
$$

or $s=s(\alpha)$. Similarly
(3) and
(4) become

$$
\begin{equation*}
(\theta+p(p))_{\alpha}=\frac{1}{2 \gamma^{\prime}} \sin 2 p s^{\prime}(\alpha) . \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{\partial}{\partial \alpha}+\omega \frac{\partial}{\partial \beta}\right)(\epsilon-卫(\mu))=-\frac{1}{2 \gamma} \sin 2 \mu s s^{\prime}(\alpha) . \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\frac{\beta_{x}+\beta_{y} \tan (\theta-\beta)}{\alpha_{x}+\alpha_{y} \tan (\theta-\mu)}=-\frac{2}{1-\tan \epsilon \tan \mu} \frac{x_{\alpha}}{x_{\beta}} . \tag{15}
\end{equation*}
$$

The second expeession for w follows from (11) and the functional relation

$$
\left(\begin{array}{cc}
\alpha_{y} & \alpha_{y} \tag{10}\\
\beta_{x} & \beta_{y}
\end{array}\right)=\frac{1}{x_{\alpha} y_{\beta}-y_{\alpha} x_{\beta}}\left(\begin{array}{rr}
y_{\beta} & -x_{\beta} \\
-y_{\alpha} & x_{\alpha}
\end{array}\right)
$$

Using (15) and (13), equation (14) can be simplited to

$$
\begin{equation*}
(\theta-p(p))_{\beta}=(1-\tan \theta \tan \mu) \frac{x_{\beta}}{x_{\alpha}} \Theta_{\alpha} . \tag{17}
\end{equation*}
$$

Since x ani y are now dependen variahles, two additional equations are tequired for them. These are zumbisheq by (11), which by (10) can be written as

$$
\begin{equation*}
y_{\beta}=x_{\beta} \tan \theta, \quad y_{\alpha}=x_{\alpha} \tan (\theta+\mu) . \tag{18}
\end{equation*}
$$

Equations (12), (13), (17), and (13) are five equations in

It is fossible to eliminaze y from the equations immaiately fy setting $y_{\beta \alpha}=y_{\alpha \beta}$ in (13). This qives

$$
0=[\tan \epsilon-\tan (\epsilon+\mu)] \frac{x_{\alpha \beta}}{x_{\alpha}}+e_{\alpha} \sec 2 \epsilon \frac{x_{\beta}}{x_{\alpha}}-(\theta+\mu)_{\beta-\sec }(\epsilon+\mu),
$$

which, using (17), can be written

$$
\begin{equation*}
0=\frac{x_{\alpha \beta}}{x_{\alpha}}+(\beta+P(\mu))_{\beta} \cot \beta+(\epsilon+\beta)_{\beta} \tan (\epsilon+\beta) . \tag{19}
\end{equation*}
$$

The first and third thrms are the β derivatives of loy x_{α} and - loa cos $(e+\mu)$, respectively. The second Serin can also be interrated explicitly; the result is $\lambda \log$ a, where we recall $\lambda=(y+1) /(y-1)$. Theryfore (19) has as a first inteqral

$$
\begin{equation*}
x_{\alpha}=n(\alpha) a-\lambda \cos (\epsilon+\mu), \tag{2.}
\end{equation*}
$$

where $A(\alpha)$ is an arbitrary function to be determined later. Hence x can be written

$$
\begin{equation*}
x(\alpha, \beta)=x(0, \beta)+\int_{0}^{\alpha} 1(\alpha) a-\lambda \cos (\theta+\beta) d \alpha . \tag{21}
\end{equation*}
$$

Similariv, fana (13) wo ge:

$$
\begin{equation*}
y(\alpha, \beta)=y(0, \beta)+\int_{0}^{\alpha} 1(\alpha) a-\lambda \sin (e+\beta) d \alpha . \tag{22}
\end{equation*}
$$

so far α and β have not been spreified beyond saying $\alpha=$ constant on streamlines and $\beta=$ constant on C^{+} chazacteriztics. Theboundary and shock conditiors in the $\alpha \beta-p l a n e$ can by simplifinc onewhat by normalizing α and β approniatsly. We let the airfoil surface be $\alpha=0$, and normalize β by setting $\beta=x$ at $\alpha=0$. The boundary contition (f) then recones

$$
\begin{equation*}
x(0, \beta)=\beta, \quad \gamma(n, \beta)=f(\beta), \quad e(1), \beta)=\tan ^{-1} f^{\prime}(\beta) . \tag{23}
\end{equation*}
$$

Cne convenient way of normalizing α is: =0 take the fron: shock angle $\eta(\alpha)$ to $b=$ qiven by

$$
\begin{equation*}
\tan \eta(\alpha)=(1-\alpha)-a n \eta(1))+\alpha \pm \operatorname{an} \mu_{0} \tag{24}
\end{equation*}
$$

whoe $\eta(0)$ is known from solving the shock conditions at the leaing sage, and μ_{0} is the upstream Mach angle, which the shock aporozches far away from the airtnil. (we assume that η is a gteicty decreasing function.) The thow field in the uppar half plane thus is manned into a Einite region in the $\alpha \beta$-fland, as shown in fiqures 4 and 9 . The principal characteristics becone vertical linos, and the streamlinoz becone horizontal lines. The Eront shock maps into some curve $\beta(\alpha)$, and the rear shock into two separate curves $\beta_{2}(\alpha)$ and $\beta_{3}(\alpha)$. Flow variables on $\beta_{2}(\alpha)$ denota values just to the left of the rear shock, and thoso on $\beta_{3}(\alpha)$ denote the
values fust to the right. The discussion of these is loft to appendix F .

With tho shock anglo $\eta(\alpha)$ a given Eunction, the shock conditions (7)-(9) can be inmediataliv solved for $\theta(\alpha, \beta(\alpha))$, $\mu(\alpha, \beta(\alpha))$, and s(α) . The shock $\beta(\alpha)$ itsolif will in qenazal deyznt on the rest of the solution, however.

A: $\beta=\beta(\alpha)$ the condition

$$
\begin{aligned}
& \tan \eta=\frac{1 y}{d x}=\frac{y_{\alpha}+y_{\beta} \beta^{\prime}(\alpha)}{x_{\alpha}+x_{\beta} \beta^{\prime}(\alpha)}, \\
& \text { RiPnoteroty on the } \\
& \text { ORIGiNAL IS (25) }
\end{aligned}
$$

nust te satiofied. using (18), this can be written

$$
x_{\alpha}+b(\alpha) v_{\beta}=1 \text { on } \beta=\beta(\alpha) \text {. }
$$

where

$$
r(\alpha)=\left.\beta^{\prime}(\alpha) \frac{\tan \eta-\tan \theta}{\tan \eta-\tan (\theta+\mu)}\right|_{\beta=\beta(\alpha)} .
$$

Subs-itution of (21) for x in (20) qives a linear intortal equation for $A(\alpha):$

$$
\begin{equation*}
A(\alpha) O(\alpha, \beta(\alpha))+b(\alpha)\left[1+\int_{0}^{\alpha} A(\sigma) 0_{\beta}(\sigma, \beta(\alpha))(1 \sigma]=0\right. \tag{27}
\end{equation*}
$$

where $0=a-\lambda \cos (\theta+p)$. If the solution for θ, μ, and s is known in the $\alpha \beta$-plane, this equation can he solved for $A(\alpha)$, and the t=ansfuznation back to the physical plane computed with (21) and (22). In qeneral however the solution in the $\alpha \beta$-blane dapends on x through (17).

Up to this point the equations in $\alpha \beta$-coordinates have
been derived without approxillation, and hence are equivalent. to the ariqinal set (?) (4).
4.- Mburaximate solutions

Gimple wave aporaximation

As merticnea earlier, in a problem with weak shock waves deviations in z and $=-$ from their upetrank values are third-order quantitiss and can be reqlected; that is, it can be assumed that $s=0$ and $z^{-}=-p\left(\mu_{0}\right)$ averywhere. The soldtion of (2)-(4) then is a sinnle vave, in winch all quantities are constant on the principal characteristics, which in turn are straight lines:

$$
\begin{aligned}
\epsilon= & \tan -\mathrm{I}^{\prime}(\beta), \mu^{\prime}=p-1\left(\theta+P\left(\mu_{0}\right)\right), s=u \\
& \text { on } C^{+}: y=f(\beta)+(x-\beta) \tan (\epsilon+\beta) .
\end{aligned}
$$

This approximation is tue $=0$ Friedrichs (1948). Friedzichs further simplified the problem by neqlecting terms of third ortar and riqher throughout the calcula"ion.) The solution satisfies the boundary condition, but can satisfy only one of the thref conditions at the shock. However, since two quatitiss (s and $r-$) are conserved up to third order across the shock, if one condition is satisfied the other two will be satisfied up to third order. It is convenient to retain the shock condition on G, equation (7), which can be solved
for the shock angle η as a function of $\theta(\beta)$. Denotiny the shock by $[X(\beta), Y(\beta)]$ we have then

 $Y^{\prime}(\beta) / X^{\prime}(\beta)=\tan \eta$.

Eliminatiry $Y(\beta)$ between these two produces a linear Eisst-oEder ordinazy differen-inl equation for $X(\beta)$, for which an cxplicit solution is easily found.

Shock Expansion theosy

Because simple wave theory takes sandr-constant at their $u p s t r e a m$ valuss, it can be expected to be least accurate near the airfojl, whore the shock is strongest and tho deviation from uproream conditions is the qreatest. An improved anproximation in this region can be obtained usina shock expansion theory, in which s and r are assumed to be Everywhere equal to thair values behind the shock at the lealing edqe, say $s=s o$ and $r^{-}=$Ion $_{0}$. This leaas to a slidntly modified version of the simple wave solution, namely

$$
\begin{aligned}
& \theta=\tan ^{-1} f^{\prime}(\beta), \quad \beta=p-1\left(\theta-r_{0}\right), s=\sigma_{0} \\
& \quad \text { on } C^{+}: y=f(\beta)+(x-\beta) \tan (\theta+\beta) .
\end{aligned}
$$

Itifis aporoximation produces a very accurate solution at the airfoil, $\in v \in n$ for flows with strong shocks, in which s and r- are not at all constant globally. Errors shoula be

```
cxpected because :he C- (compreasion) waves which arz
proiucen by reflection of the Ct (axpansion) waves at the
front shock have been neglectar. dnyes & probstein (1965)
explain that tacse refloctions however are fairly weak, ani,
more impor"antiy, are neamlv cancelled by expansion waves
produced by the in+craction of the C+ waves with the entropy
or vo=iici:y layers. 'ahcry (1955) ajves a similar
explanation.
The shock expansion solution rapidly loses accuracy as the distance from the airfoil incroases. This is in contrast to simple wav? theory, which is accurate at. infinitv.
```


REscent 1 puroxination

we wakc the assumption that the flow angle \in is approximately constant on principal characteriszics. This holds true in the sinple wave solution, and in qeneral is closely rclated to sinock expansion theory. This =clationship will be brought out later. IE $\in_{\alpha}=$), then (17) renucrs to

$$
\begin{equation*}
\Leftrightarrow-E(\beta))_{\beta}=0 \text { or } E-P(\beta)=-P_{0}(\alpha) \tag{28}
\end{equation*}
$$

where $g_{0}(\alpha)=P[\mu(\alpha, \beta(\alpha))]-\theta(\alpha, \beta(\alpha))$ is qiven explicitly by the shock conditions. Substitution of $\Theta=F(\mu)-P_{0}(\alpha)$ in the remainind equation, (13), then gives

$$
\begin{equation*}
2 p(\mu)_{\alpha}-p_{0}(\alpha)=\frac{1}{2 \gamma^{\alpha}} \sin 2 \mu^{\prime}\left(\alpha^{\prime}\right) . \tag{29}
\end{equation*}
$$

$P_{0}(\alpha)$ and (α) are known functions, so (29) can be regarded as an ordinary differontial equation for μ, in which β entere only as a pamametar, through the inimial value

$$
I^{\prime}(0, \beta)=p-1\left[P_{0}(1)+\tan ^{-1} f^{\prime}(\beta)\right]
$$

Fquation (2?) isinonlinear, but can be readily solved using standand numorical mothots. The solution in the $\alpha \beta$-plane is then complotea by complting $E(\alpha, \beta)=P(\beta(\alpha, \beta))-p_{0}(\alpha)$ and findiry the shock $\beta(\alpha)$ foom the computed solution $\mu(\alpha, \beta)$ and the values $\rho(\alpha, \beta(\alpha))$ aiven by the whock conditions. (since in nacrics this would involve in arpolation, it is more conveniant to use $\mu(\alpha, \beta(\alpha))$ as the initial valuc and inteqrate (29) üwnwards along each characteristic $\beta=\beta(\alpha)$. Then $\beta(\alpha)$ can be computed froll

```
    \(f^{\prime}(\beta(\alpha))=\tan \left\{P[\mu(0, \beta(\alpha))]-P_{0}(0)\right\}\)
```

Ly inveadinq f'.) The solution for fe 1 , and s in the d $\beta-p$ ane $i s$ independent of x and y, because (17), the only equation ir which x or y appears, is neqlected. The -ransforlation back to the $x y-p l a n=$ is found by solving (27) for $\Lambda(\alpha)$ (also an easy numerical calculation) and evaluating the inteqrals (21) and (22). The solution obtaineú from this approximation will satisfy the boundary condition and all =hzee shock conditions, but will satisfy (17) only approximately.

This approximation is rclated to shock expansion theory in the following way. Shock expansion theory shows that r^{-} is approximately constant along the airfoil, and, as has been pointed out by Mahony and Skett (1955) and Meyer (1957), since any stremalins is a potential airfoil, r^{-} should ke approximately constant along each streamine. This is just (28).

In she literature this assumption is employed in various ways. If $r^{-}=-P_{0}(\alpha)$, then by (17) $\epsilon=e(\beta)$, and hence also $p=p(\beta)$, as can $b e$ seen froill (5+). Taking both $\epsilon=\epsilon(\beta)$ and $p=p(\beta)$ alonq with $=-=-p_{0}(\alpha)$ overdetermines the problcm however, since any one of $9, p, a n d r-c a n$ be wricten as a function of the other two (and s). This was no-sid ky Egqers, Syvortson, and kraus (1953). In their generalized shock expansion method (a numcrical construction similar to the method of characteristics), they resolve this by averaging results assuming $E=-p_{0}(\alpha)$ and $\theta=\theta(\beta)$ with those assuming $r^{-}=-P_{0}(\alpha)$ and $p=p(\beta)$. While this seems somewhat arbitrary, it can be shown that the corrcct result in fact lies between the two (see Haycs \& Probstein 1966, p. 493). Meyer (1957), on the other hand, implicitly drops the assumption $p=, p(\beta)$, and uses the solution $r^{-}=-p_{0}(\alpha)$ and $\epsilon=\epsilon(\beta)$, which satisfies (17) exactly, but does not sarisfy (1.3).

It is more consistent to approach the problem in either of. two ways: in equation (17) assume (i) the left hand side or (ii) the right hand side is zero. Thon solve (17) along
with the remaining equation, (13). In case (i), the solution becomes $\theta=\theta(\beta), F=p(\beta)$, and $s=s(\alpha)$. The function $\in(\beta) \quad 1 s$ determined by the boundary condition, and $v(\beta)$ must $b e d n t e r m i n e d$ by the shock conditions. It then happens that over the rear half of the airfoil, $\beta>\beta(1)$, $P(\beta)$ cannot be found, since no data is specified on the rear shock. This difficulty does not arise in approach (ii). Which is the one we adown=. This method requires more work, hut has been found so be more accurate. It also produces the same solution at the airfoil as shock expansion theory. Additional support for his choice is lent by the face that the factor multiplying e_{α} in (17) is in general quite small. Approach (i) has however been found useful for calculating the flow behind the tail shock, where the other method is inappropriate (see appendix B).
5. Numexical_methor

Our approximate solution does not satisfy (17), or, Equivalently, =he C^{-}equation (14). In this section we present a simple iterative method for correcting the solution so that it will satisfy all the equations and conditions.

The approximate solution is first computed on a rECTangular grid in the $\alpha \beta$-plane, as shown in figures 4 ana 9. The same arid points are used in the iteration scheme.

The front shock $\beta(\alpha)$ is therefore kept fixed throughout the i-seations. This fixes the normalization of α, so for every itimation bevoma the oriqinal approximation $\eta(\alpha)$ is not qiven by (24) and must be found as part of the solution. This also implies that $\alpha=1$ will no longer corfespond exactly :0 $y=\infty$.

Given the approximate solution for $6, \mu, s$, and x in the $\alpha \beta$-nlane, a corrected value of $r-i s$ computed from the c^{-} equation, (14), starting at the shock with the value given by :he shock conditions and integrating along cclaractaristics:

$$
\begin{equation*}
r^{-}=r_{\text {shock }}-\int_{c^{-}} \frac{1}{2 x^{-}} \sin 2 \mu d s . \tag{30}
\end{equation*}
$$

The new value $=-(10, \beta$ at the airfoil deteraines a new value of E^{+}there, since $\mathrm{I}^{+}=2 \epsilon-\mathrm{F}^{-}$, and $\in(0, \beta)$ is given by the boundazy condizion. Eith this as an inisial value, a new =+ can be computed everywhere by inteqrating (13) along c+ chazacteristics:

$$
\begin{equation*}
r^{+}(\alpha, \beta)=r^{+}(0, \beta)+\int_{0}^{\alpha} \frac{1}{2 \gamma^{\ell}} \sin 2 \mu s^{\prime}(\alpha) d \alpha . \tag{31}
\end{equation*}
$$

The solntion given by $\mathrm{r}^{-}, \mathrm{r}^{+}$, and s will satisfy (13), (14), and the boundazy condition. However, the new value of $r^{+}(\alpha, \beta(\alpha))$ will not in goneral satisfy the shock conditions, and hence will imply new values of $\eta(\alpha)$, $s(\alpha)$, and $r-(\alpha, \beta(\alpha))$. Tnis furnishes a new initial value for integeating (3), which is usod to start the next iteration.

In summary, the seeps of the method are as follows:
I. Compute arproximation, fixing front shock and grid in $\alpha \beta$-plane.
II. Compute $r^{-}(\alpha, \beta(\alpha))$ trom the shock conditions and r- (α, β) everywher? $f=0$ (3)
III. Compate new $\left.\left.\Sigma^{+}(1), \beta\right)=2 e(1, \beta)-x^{-}(1), \beta\right)$ with $e(0, \beta)$ fron the bountary condi-ion and $\quad(y, \beta)$ from step II. Compute $r^{+}(\alpha, \beta)$ vorymbere firom (31).
IV. Concute new values $\mathrm{B}=\left(\mathrm{F}^{++r^{-}}\right) / 2$ ard $\mathrm{\beta}=$ p-1 ((r+-r-)/?) curyshers. 叉ith the new solution at the shock compute a now $\eta(\alpha)$ and $s(\alpha)$ from the shock condi+ions. A1so recompute $A(\alpha)$ and $x(\alpha, \beta)$. v. Check for converience and either gc to step Il or stop and compute $y(\alpha, \beta)$.

This scheme has besn implemented using second-order numerical methods (trapezoidal rule, etc.). The dotails are given in apfendix c.

The evaluaticn of the inteqral (30) at step II is the most conplicated calculation in the procedure. In place of equation (14) we might have inteyrated (17), which is equivalent and has tho advantage that f^{-}is differentiated only with respect to β. In practice however, this does not work very well. The iteration procedure does not converge as quickly, and may not converge at all without modification (sce Chonq 8 Sirovich 1980). We attribute this to the fact that small variations in r^{-}are naturally propagatea along the $\mathrm{c}-\mathrm{charactaris+ics}$.

G:-_ESGly

The execution of the numprical procedures which we have discinsed is beth rapid and inexpensive. As a resul: we have ferforned a maber of calculations for several airfoils ovtre 3 range of Mach numbers. The resules presented in the figures are foi a sympotife circulat arc airfoil with thickness ratio 0.25 , at upstream nach numbers $\mathrm{A}_{0}=2.5$ and 7.5. In scme Eiqures the intermedinte case $M_{0}=4.0$ is also shown. These cases were chosen in part for the interesting effects they exhibit.

The itezazion scheme isfound to converue quite rapialy, basen on a comparison of tho solutions at succesive itcrations. In the following tahle, the maxima (over all quin coints) or the differonces in the values of A, p, and x are uiven for the case $\mathrm{M}_{0}=7.5$.

iteration	$\Delta \theta / A(0,0)$	$\Delta \mu / 11$	$\Delta x / x$
1	0.0595	0.1170	0.3701
2	0.0171	0.0096	0.1221
3	0.0038	0.0097	0.0112
4	0.0002	0.0006	0.0017
5	0.0001	0.0093	0.0009

The greatose differences are in x and occu= within a few qria coinsis of $\alpha=1$, where $x \rightarrow \infty$. The erors in x are smallet closer to the airfoil. For thinner airfoils andor lower

Mach rumbers, fower iterations are required for the sama accuracy. In the case of a 1)\% thick pazabolic arc airioil, for examplo, oven at $\mathrm{M}_{0}=10$ the difforence hetween the approximate and exact solutions is less than one porcent in θ anu p and six per cent in x. In such a case theze iss Lit:le Eeason =o qo bevond the approximate solution.

The cass $\because_{0}=2.5$ is tiscussed jn Holt (1977). Fiquae 3 contains a comparison of the leading shock when computed by our method and the EVLR method. The small difference is probarlv attributable to conying errors. In addition we jndicata our approximate theory and that which emerges from a vafian: of shock expansion heory (he lataez and the BVLT curve are taken frot Holt, p.77). In this case, our approximate solution is indistinguishabe Erom the cxact solution.
ie continue the presentation of this case by indicating in tiqure 4 a portion of tha arid in the $\alpha \beta$-plane used in tho numerical inteqration. (The increment. $\Delta \alpha$ between the streamines shown is 0. 1 ; the computations were done with $\Delta \alpha=1.125$.$) The trianqular reqion corresponds to the filow$ behimu the tail shock (see appendix B). fiyure 5 gives the entrony $s(\alpha)$ in the reqion between the front and tail shocks, and $s_{3}(\alpha)$ in the region behind the tail shock. The deflection angle e is plotend versus α in figure 6 on each of the C^{+}characteristics shown in figure 4. A specification of θ in the region betind the tail shock is deemed unnecessary since it is very nearly zero everywhere
 on ach streamline of figure 4 . Finally, in figure 9 the streanlines, chamacteristice, and shock vavos are shown transformed back to the xy-plans. These fiqures completely Qeterminc the solution. In particular, corresponding to any point (x, y) of the physical plane we can determine the coordinates (α, β). The entropy s is then round Eron Eiyure 5 and the deflectinn argle A from figure ti. The latter and r^{-}fron fig̣ure 7 deterainc the Prandtl angle $\mathrm{P}\left(\mathrm{f}^{\prime}\right)$. All othor flocw properties then follow.

For comparizon wn qive in fiquases 9-13 similaz data fo= the sare frotile at $h_{0}=7.5$. In this case $|\theta|<0.02$ behint the tail shock.

Te beqin our discussion of these fesults by considering the limit. $x \rightarrow \infty$. Far behind the airfoil the pressure becomes constant, $p \rightarrow 1$, and $a s$ a consoguence $\theta \rightarrow$ D. It then follows froll the equation of state that

$$
a^{2}=\exp \left[-(\gamma-1) s_{3}(\alpha) / \alpha\right],
$$

where $\mathbf{g}_{3}(\alpha)$ is qiven either by fiqure 5 or figure 10. Froin (1), we can then compute the velocity at infinity. this is shoun in figure 14 for $\mathrm{A}_{0}=2.5,7.5$, and the intarmadate case $\eta_{0}=4.0$ (same profile). As a result of the non-uniforil entropy, tiaf flow at infinity has a vorticity distribution。

Another fearure cf interest is the entropy variation along the tail shock (figures 5 and 10). This has a
two-scale ampearance, especially at the higher dach number, which shows a very rapia decrease in seronath jn the initial pcrejon of the shock. The slower variation in entwofy follows that inducad by the front shock. Looking at figure 13. We see that the streamlines spread apart rapidly as the flow passes the minchozi posi-ion. The flow inclination at: the tail shock therefote decrensea rapidly, which results in a corresponding decrase in shock strength.

Ancther important effect is also at work in this region. The gas, which is comperssen at the front shock, in Eollowing the profile past the midchord experiences a rapid expancion, which is sufficiently strong so that the local act nutare at the trailinq caqe exceeds the upstram value $\left(G=9.33\right.$ for the $H_{0}=7.5$ case). Since β is small, the larfe neqative value of e on the after part of the airfoil causcs the principal characteristics to have negative slopes, so that waves oriqinating there must intersect the tail chock ncar the ainfoil. This quickly cuts off the recovery prooess. As a Iesult the Mach nubber along the tail shock fall: off rapidly, which augmente the rapid deceense in strongth of the tail shock. For the case $M_{0}=7.5$ the Mach mumer along tho shock even falls below 7.5.

A feature which is somewhat difficult to perceive from figures 8 ard 13 is that the tail shock angle is not monotcnic. In figure 15 the variation of the slope of tho tail shock is पiven ẗor the three casos wo have discussed.
roz aiach case the thock angle dec=eases on leaving the trailing care (?his result has been varified indepondently by Janes C. Townsond 1970, 'asind a diffexent nunerical methor dovelopea by Manusl D. Salas.) This is conexary $=0$ what is obsecvad for lower mach numbers or thinner bodies. he have seen that the angle of the incident flow atereases along the shock. If the tach number to the left of the shock were constant. this woulf prodic: a deceease in shock anqle. The decrease in yach number alonq the shock temis to have the opposite nticct howner, to incecase the shock angle In these cases, near the trailing edqe the deceeasing thow ancle lonindtes. For bigin Mach numbers the shock anqle is more lopenarit on the flow anye than on the Nach number, as can be secn from tho fact that the shock polams for difiecent Mach numbos abpzoach a limiting cu=ve as $M \rightarrow \infty(\sec 2 . \operatorname{di}$ Lionmann F Foshko 1957, p. 87). For Lown Nach numuras or thinner airfoils the eftect of decroasing Macn number dominates the effect of decreasing flow andale.

Geturning to Eiqure 15 we also sed that for do $=7.5$ tha sloce undergoes a second oscillation in which it rises abova -he yach anqle at inEinity. This is explained by the rapia fall-off of Mach number alona the shock, below itas valus at infinjty, A Einal item of note in fiqure 15 is that for Ao $=7.5$ the shock slope actually stares off with a value Which is qreater than at infinity. The expansion process along the profile mroduces a relatively high ach number at
-r. railing elue, but it is nos qreat enough to bring the slope below the unserenm value.

The pressure disrifation behind the airfoil is insersetinge in figures 16 and 17 we show the pressume contours hehind the tail shock ant the values of log p on the x-avis for $x>1$, for the cases $M_{0}=2.5$ and 7.5 . The preseure on the rear part of the airfoil is so low that, in spite of the high shock strentthat the trailing edge, the prossure jumb throunh che shock does not brime p up to the equilibrium frossuze $p=1$. Thare is a rapid pressure increase impodiately bshird the trailing edge, in which p increases thove the equilibrium value, reaching a maximum about ons chori length ont. The return to equilibriun fyom this point is very qradual. The total variation in pressurs behind the tail shocks is quite small compared to that along -ha airfoil surtace (in tarms of lou p, abou: 3 ; at $\mathrm{a}_{0}=2.5$ and 19% at $\left.y_{0}=7.5\right)$.

Beveral other features of the calculations also merit mention. yost notable perhaps is the sumprising constancy of thr deflection argle on the principal characteristics. Ths variation in θ is alnost undetectahle in figure 6 and, as Eiqure 11 indicates, the most serious departure occurs nedz the trailing edge, where it is about 10% in the worst cass. As mentioned already, $\in=0$ is an excellens approximation throughout the region behind the tail shock. A related phencrenor is the near-straightass of the principal characteris.ics. This howevar does not remain
:rua in the retion betind the airfoil.
We are also in position to examine the basic assumption of shock expansion heory, thit r^{-}is constant on strearlines. From equation (17) we see that this condition is closely relat do the constancy of θ on principal characteristics. As both fiqures 7 and 12 indicate, this is a Eeasonable assumption, al hough somewhat remackahly it is better at the diEfoil than in its neighborhood. In bosh cases this assumption is far less satisfaccory behind the -ail shock. The rapid down stroke of the r- curves also indicates a large value of θ_{α}, although \in itself remains qui.es small.

This work was supported by the National neronautios and Space Administration under NASA grant no. NSG 1617.

Apvendix_A:_Case_ofanarbitraty $q a s$

For an arbityary gas, the equations of motion in chatacteristic form can be written (hayes ef probstein 1966. p. 484)

$$
\begin{gather*}
d s=0 \text { on } d y / d x=\tan \theta \tag{A1}\\
d \in \pm \Phi d p=0 \text { on } d y / d x=\tan (E \pm p) \tag{A2}
\end{gather*}
$$

Where $\Phi=p_{0} /\left(p_{0} a_{0}^{2} p q^{2} \tan \mu\right)$. We can consiapr Φ to be a
function of p and s. By introdncing the variables

$$
\omega(p, s)=\int \Phi(p, s) d p \text { and } \Omega(p, s)=\partial \omega(p, s) / \partial s,
$$

Which are defined so that $d \omega=\Phi d p+\Omega a s$, (A2) can be wriこさen

$$
\begin{equation*}
d e \pm d \omega= \pm \Omega \operatorname{sis} \text { on } d y / d x=\tan (\theta \pm 1) \tag{A3}
\end{equation*}
$$

If ω and Ω are now regarded as functions of μ and s. (A1) and (A 3) are turee equations in three unknowns: e, μ, and s. Equations (3) and (4) are a special case of (A3) in which $\omega=E(\mu)$ and $\Omega=(\sin 2 \mu) / 2 \gamma^{2}$.

The transfurmation to $\alpha \beta$-coordinates goes through for the most part as before. Equarions (12)-(14) in the qenezal case becoms

$$
\begin{gathered}
s_{\beta}=0 \\
(\theta+\omega)_{\alpha}=\Omega s^{\prime}(\alpha) \\
\left(\frac{\partial}{\partial \alpha}+w \frac{\partial}{\partial \beta}\right)(\epsilon-\omega)=-\Omega s^{\prime}(\alpha)
\end{gathered}
$$

Where w is still given by (15). The counterpart of (19) is

$$
0=\frac{x_{\alpha \beta}}{x_{\alpha}}+(\mu+\omega)_{\beta} \cot \mu+(\theta+\mu)_{\beta} \tan (\theta+\mu)
$$

This equation can in principln be solved in the same manner as (10), but we do not bave an explicit integral of the simple form (2,).

The assumption $f_{\alpha}=0$ in the general case implies
$(\epsilon-\omega)_{\beta}=0$ or $\epsilon-\omega=-\omega_{0}(\alpha)$. The resulting approxination can te expected to he valid at least in cases in which the behavior of the qas does not differ too grearly from that of a poefect gas wioh constant specific hease and $\gamma=1.4$. It has been shown (see Hayes s. Probstein 1966, §7.2) that shock expansion theory tends to lose accuracy if y is allowed to anozoach 1.

In the qeneral case, the solutions in the upper and louer hale planes can be computed independently, up to the appeazance ot the tail shocks. The flows from the top and bottom interact behind the aizfoil, which complicates the conputation cf the tail shocks and the flow behind them. The upper and Lower reqions behind the airfoil are separated by a contact discontinuity, or slipstrean, whose location j.s unknown a priori. Across the slipstream \in and p are continuous, bu= the other variables junp. This conplication does not arisp in the case of an airfoil symmetric with =csnect to the x-axis; the silipstrean coincides with the
 is s.il. quite different than the front shock problem, because the flow upsteram of the tail shock is not uniform.

The transformation to $\alpha \beta$-coordinates behind the tail shock can be chosen differently than that ahead of it. In

Farticular, it is more proper to regard the C characteristicis as the principal characteristics, since the C+ waves are only produced as reflections of the C^{-}waves, Which oriqinate the tail shock (see figure 1). on the other nand, we have found that for the iteration procedure it i.s better to take the c+ characteristics as the β-coordinates, because this has the effect of putting more points neaz the trailina eaqe, where the most rapid variation in the solution occurs. However, the approximate solution derived below is more accurate if the C^{-} chavacterietics are taken as $\beta=$ constant. Modifications for the use of the c- characteristics as coordinates in place of the ct characteristics are straightfowward. The normalizations of α and β behind the tail strock are also different than those ahead of it. It is natural to keen α constant on streanlines as they cross the shock. Al玉o, rather than set $\beta=x(0, \beta)$, we can normalize β so that the region $x>1$ is mapped into a finite region in the $\alpha \beta$-plane. This was done by setting $\beta_{3}(\alpha)=1+\alpha / 2$, producing the configurations shown in figures 4 and 9. The calculation of the tail shock $\beta_{2}(\alpha)$ can be done as follows. We assume that the solutions for $\theta(\alpha, \beta), \mu(\alpha, \beta)$, and $x(\alpha, \beta)$ are known in the neighborbood of $\beta_{2}(\alpha)$. Equation (26) holds at $\beta_{2}(\alpha)$ as well as at $\beta(\alpha)$, and since in the former case x_{α} and x_{β} ars known functions, we can write (26) as an ordinary differential equazion for $\beta_{2}(\alpha)$:

$$
\begin{equation*}
\beta_{2}^{\prime}(\alpha)=n\left(\alpha, \beta_{2}(\alpha)\right)=-\frac{\tan \eta_{2}-\tan (\epsilon+\mu)}{\tan \eta_{2}-\tan e} \frac{x_{\alpha}}{x_{\beta}} \quad \beta=\beta_{2}(\alpha) \tag{B1}
\end{equation*}
$$

As yet $\eta_{2}(\alpha)$ is undetermined. If $w \in$ specify one variable, say \in, fust to the zight of the shock [i.e. at $\beta=\beta_{3}(\alpha)$] then we can solve the shock conditions for $\eta_{2}(\alpha)$, and solve (R1). This enables us to set up an iteration procedure similar to that used for the front flow.

The approximate solution used Eor the flow over the dinfoil cannot be conveniently employed for the flow behind the tail stock, because the nonuniform flow to its left makes it imposisible to calculate $\mathrm{p}_{\boldsymbol{\rho}}(\alpha)$ and $s(\alpha)$ a priori for use in (2\%). Thereforg we use the simpler of the approximations qiven in section $4: \epsilon=\epsilon_{3}(\beta), p=p_{3}(\beta)$, And $E=s_{3}(\alpha)$. All the characteristics intersect the $x-a \times i s$, where $\theta=0$, so $A_{3}(\beta)=0$, and hence $\theta=0$ Everywhere. In particular $\theta=0$ at $\beta=\beta_{3}(\alpha)$. de can therefore solve for $\beta_{2}(\alpha)$ as in the previous paragraph, and also compute all other quantities on hoth sides of the shock. This determines $p_{3}(\beta)$ and $s_{3}(\beta)$.

The computation of the transfomation from $\alpha \beta$ - to xy-coordinates is also somewhat different. Denoting the known value $x\left(\alpha, \beta_{2}(\alpha)\right)$ by $x_{2}(\alpha)$, we must have $x\left(\alpha, \beta_{3}(\alpha)\right)=x_{2}(\alpha)$, which implies

$$
\begin{equation*}
x_{2}^{\prime}(\alpha)=x_{\alpha}\left(\alpha, \beta_{3}(\alpha)\right)+\beta_{3}^{\prime}(\alpha) x_{\beta}\left(\alpha, \beta_{3}(\alpha)\right) \tag{B2}
\end{equation*}
$$

An equation of the form (26) also holds at $\beta=\beta_{3}(\alpha)$:

$$
J=x_{\alpha}\left(\alpha_{1} \beta_{3}(\alpha)\right)+b_{3}(\alpha) x_{\beta}\left(\alpha_{1} \beta_{3}(\alpha)\right)
$$

If we eliminate x_{β} between these $=$ wo, substizute $x_{\alpha}=A_{3}(\alpha) Q(\alpha, \beta)\left[\right.$ where we recall $\left.0=a-\lambda_{\cos }(\epsilon+\beta)\right]$, and solve For $A_{3}(\alpha)$, We qet

$$
\begin{equation*}
A_{3}(\alpha)=\left.\frac{x_{2}^{\prime}(\alpha)}{Q\left\{\alpha, \beta_{3}(\alpha)\right)} \frac{\tan \eta_{2}(\alpha)-\tan \theta}{\tan (\theta+1)-\tan \theta}\right|_{\beta=\beta_{3}(\alpha)} \tag{B4}
\end{equation*}
$$

from which we can determine

$$
\begin{equation*}
x(\alpha, \beta)=x_{2}\left(\alpha_{3}(\beta)\right)+\int_{\alpha_{3}(\beta)}^{\alpha} A_{3}(\sigma) Q(\sigma, \beta) d \sigma \tag{D5}
\end{equation*}
$$

where $\alpha_{3}(\beta)$ denotes the inverse of $\beta_{3}(\alpha)$. A similar cquazion follows for $y(\alpha, \beta)$.

The iteration scheme proceels essentially ats betore. Given $r-\left(\alpha, \beta_{3}(\alpha)\right)$ From the shock conaitions, we integrate (30) along c^{-}characteristics down to the slipetream $\alpha=0$. Then we reset $r^{+}(0, \beta)=-r^{-}(0, \beta)$, and integrate (31) upwaris to $\beta_{3}(\alpha)$. The new rt and r^{-}define a new $\theta\left(\alpha, \beta_{3}(\alpha)\right)$, which is $u s \in d$ to solve for a new shock $\beta_{2}(\alpha)$ and new functions $\eta_{2}(\alpha), s_{3}(\alpha)$, and $=-\left(\alpha, \beta_{3}(\alpha)\right)$, with which we start the moxt iteration.

AppEndix_C: Details_of numerical method

This aptendix contains the details of cach step of the iteration scheat described in section 5 , as presently
implerented.
SEEPI. ie take a uniforin qrid in α with $N+1$ points $\alpha_{i}=i \Delta \alpha(i=1,1, \ldots, N)$, where $\Delta \alpha=1 / N$. Over the front hale of the airfoil the β azid points are taken $=0$ be $\beta_{j}=\beta\left(\alpha_{j}\right)$ $(j=0,1, \ldots, N)$, where $\beta(\alpha)$ is the equation of the shock as given by the approximate soluticn. Over the zear half of the airfoil the β grid noints are taken evenly spaced.

The approximate solytion in the $\alpha \beta$-plane requires the solution of the ordinary differential equation (29) for each β_{j}. Thise was done by the improved Euler method, which for the goneral equation d $\xi /$ d.t. $=\varphi(\xi, \pi)$ is qiven by

$$
\begin{equation*}
\xi_{k+1}=\xi_{k}+\frac{\Delta t}{2}\left[\varphi\left(\tau_{k}, \xi_{k}\right)+\varphi\left({ }_{k+1}, \xi_{k}+\Delta=\varphi\left(\tau_{k}, \xi_{k}\right)\right)\right] \tag{C1}
\end{equation*}
$$

The approximate solution is completed by solviny the iftegral equation (27) for $A(\alpha)$ and evaluating x and y from (21) and (22). Equation (27) is linear, and can be readily solved by the trapezoidal rule: the integral is approximated by the appropriate sum, and the resulting equation is solved for $\Lambda\left(\alpha_{j}\right)$ in terns of $A\left(\alpha_{0}\right), A\left(\alpha_{1}\right), \ldots$, $A\left(\alpha_{j-1}\right)$. The derivatives $Q_{\beta}\left(\alpha_{i}, \beta_{j}\right)$ appearing in the integral are evaluated numerically using a three point scheme on the uneven β mesh. The integrals for x and y, (21) and (22), are computed by the trapezoialal rule.

SEEPII. We can write (14) as

$$
\begin{equation*}
\lambda r^{-}=-\frac{1}{2 \gamma} \sin 2 \mu d s \text { on } c^{-}: d \beta / d \alpha=w \tag{C2}
\end{equation*}
$$

where w is given by (15). In computing w, x_{β} must be evaluated numerically, but x_{α} is given analytically by (20). The C characteristic through the point. (α, β) is drawn back to intersect the line segment between $(\alpha, \beta-\Delta \beta)$ and $(\alpha+\Delta \alpha, \beta)$ at the point $(\hat{\alpha}, \hat{\beta})=(\alpha+\nu \Delta \alpha, \beta+(\nu-1) \Delta \beta)$. To find this point the equation $\alpha \beta / d \alpha=w$ is integrated from α to $\hat{\alpha}$, using the improved Euler method (C1) again, with the modification that a Erst approximation to $W(\hat{\alpha}, \hat{\beta})$ mus- be found by interpolation. We =abe

$$
\begin{gathered}
\nu=\left[1-w(\alpha, \beta) \frac{\Delta \alpha}{\Delta \beta}\right]^{-1} \\
\hat{W}=(1-\nu) w(\alpha, \beta-\Delta \beta)+\nu w(\alpha+\Delta \alpha, \beta)
\end{gathered}
$$

and then $x \in d \in f i n e \nu$ by

$$
\nu=\left[1-\frac{1}{2}(w(\alpha, \beta)+\hat{w}) \frac{\Delta \alpha}{\Delta \beta}\right]^{-1}
$$

This value is correct to second order and is used =o interpolate the value

$$
\hat{I^{-}}=(1-\nu) I^{-}(\alpha, \beta-\Delta \beta)+\nu I^{-}(\alpha+\Delta \alpha, \beta)
$$

and, similarly, \mathfrak{j} and \hat{E}. The value of $\mathrm{r}-(\alpha, \beta)$ is then computed by the trapezoidal rule:

$$
r-(\alpha, \beta)=\hat{r}-\frac{1}{4 f^{2}}[\sin 2 p(\alpha, \beta)+\sin 2 \hat{j}][\sin -\hat{s}]
$$

A somewhat simpler method can be used if (α, β) is two more arid points from the shock. We write (14) as

$$
r_{\alpha}^{-}+w r_{\bar{\beta}}=-\frac{1}{2 \phi} \sin 2 \mu \operatorname{si}(\alpha) .
$$

evaluating w and $\mu a=(\alpha, \beta)$, and replacing $=\bar{\alpha}$ and $r_{\bar{\beta}}$ by three-foint one-sifod differences employing points upward and to the left of (α, β), respectively. Then we solve for $=-\{\alpha, \beta\rangle$.
ġEn_IIq. Equation (13) can be inteqrated directly. Aqain using the trapezoidal rule, we have

$$
\begin{equation*}
I^{+}(\alpha+\Delta \alpha, \beta)=I^{+}(\alpha, \beta)+ \tag{c3}
\end{equation*}
$$

$\frac{1}{4 x}[\sin 2 \mu(\alpha, \beta)+\sin 2 \mu(\alpha+\Delta \alpha, \beta)][s(\alpha+\Delta \alpha)-s(\alpha)]$.
S:EpIV. Whils it is possible in theory to solve the shock relations given any onc quantity just to the right of the shock, in practice it is aifficult given r+ or r-. Therefore we use the new $e(\alpha, \beta)$ conputed from r^{+}ard r^{-}, and solve the shock relations for $\eta(\alpha), s(\alpha)$, and $\mu(\alpha, \beta(\alpha))$ as functions of $e(\alpha, \beta(\alpha))$. Then $r^{-}(\alpha, \beta(\alpha))$ is redefined froll these values to start stop II.

The computations of $A(\alpha)$ and $x(\alpha, \beta)$ are done in the same way as in the approximate solution. It is not necessary to compute $Y(\alpha, \beta)$ until the final solution is obtained, since only x appears in the equations.

Step_- To check for conyergence, we collpare e, β, and x at all grid points between successive iterations, and stop when the maximum hifforence is less than some given tolerance.

Reserences

Adanson, T. C. 1968 I. Fluid_Hech. 34, 735.
Rabenko, K. I., Voskresenskiy, G. P., Lyubimov, A. N. \&
fusanov, V. V. 1966 Thy
past_smogtn_bodies. Nasa Tech. Transl. F-330.
Chong, T. H. E, Sirovich, L. 1980 To appear in phys. Fluide.
Courant, E. E, Friedrichs, K. 0. 1943 Sunersonic_Flownan
Stock Wavej. Interscience.
Eqqers, A. J., Syvertson, C. A. E Kraus, S. 1953 NACA.Epog=
no. 1123.
Epstein, P. S. 1931 Eroc. Mat. ACad. SCi. 17, 532.

vol. I. Academic press.
Holt, N. 1977 Numerical Methois_in_Fluid_Dynamics-
Springer-verlag.
Liepnann, H. W. \& Toshko, 1957 Elaments_of_gasgynamics.
Wiley.
Liqhthjil, y. J. 1960 Higher_Apgeximations_in_Aerodynamic
Theney. Princoton University Press.
Jones, , G. 1963 J. Fluid_Mecho 17, 506.
Mahony, J. J. 1955 I. Aero. Sci. 22, 673.

AEEO. Note 147.
Aeyer, ₹. F. 1957 2.-Angl. Mathe 14, 433.
Meycr, P. E. 1960 Theory of characteristics in inviscid qas
àmamics, Handhuch der_Physik, vol. IX. Sprinqer-verlag.
Sirovich, I . F Chong, T. H. 1980 To appear in Phys._Elnitis.
Taylor, T. D., Ndefo, F. \& Masson, B. S. 1972 I... Comp. phys.
気 99.
Iownsend, J. C. 1979 Private communication.

巨igucomantions

Fiqure 1. Supersonic flow past an airfoil: heavy lines denote shock waves; solid lines aznote stroamlines and C+ charactaristics: dashed lines denote $C-$ charac:eristics.

Fiqure 2. Jumpa in cntropy sand siomann invaziant racross a shock wave as a function of $\theta_{2}\left(\theta_{1}=0\right)$ at various Mach numbers. - $\Delta s ;----\Delta r-$

Fiquef 3. Front shock for flow past a 25 circulay arc profils at $\mathrm{H}_{0}=2.5$. -----, evLR method; ---, shock exfansion mathod (hoth from Holt, 1977); ——, presant approximase and zxac: methods.

Figure 4. Mo M_{0}.5. Flow fiela in $\alpha \beta$-plane.
Figura 5. \% $=2.5$. Entropy $s(\alpha)(\longrightarrow)$ in rogion betwan tront and tail shookis, and $s_{3}(\alpha)(---)$ in region behinit tail shock.

Figure $5 . y_{0}=2.5$. Elow angle A va. α on each C^{+} characteris:ic of figure 4.

Figure 7. $M_{0}=2.5$. Riemann invariant r^{-}vs. β on each streamline of figure 4.

Fiques $9 . M_{0}=2.5$. Flow fieln in $x y-p l a n e$. The streamines and C^{+}characteristics corresnond to the lines $\alpha=$ constant and $\beta=$ constant, respectively, in fiqure 4. Fiqure $0_{0} \mathrm{M}_{0}=7.5$. Flow field in $\alpha \beta$-plane.

Fiqure 10. $\mathrm{N}_{0}=7.5$. Entropy $s(\alpha)(\longrightarrow)$ in reqion between front and tail shocks, and $s_{\mathbf{3}}(\alpha)(---)$ in region behind
tail shock.
Fiquere 11. $\pi_{0}=7.5$. Flow anqle ϵ vas. α on each C^{+} characteristic of figure 3 .

Figuec 12. Mo=7.5. Riemann invariant r- vas $\boldsymbol{\beta}$ on each streaminne of fique? 9.

Figure 13. $9=7.5$. Flow field in xy-plane. The streamlines anci ct charactaristics correspond to the lines $\alpha=$ constant and $\beta=$ constant, respectively, in figure 9. Fifure 14. Velocity profiles Ear behind airfoil for $\mathrm{H}_{0}=$ 2.5. 4.0, and 7.5. Dashad lines denote asymptotic vallios an

Fiquer 15. Tail shock slope $\tan \eta_{z}$ vs. α for $M_{0}=2.5,4.0$, and 7.5. Dashed lines are asymptotic values, tan μ_{0}.

Figure 16. $M_{0}=2.5$. Upper: pressure contours behind tail shock; $\log p=-0.07(0.01) 0$ and $0(0.001) 0.01$. Lower: $\log p$ vs. x on $x-a x i s$.

Fiqure 17. $y_{0}=7$. 5. Upper: pressure contours behind tail shock; $\log \mathrm{p}=-0.5(0.1) 0.1$ and $0.1(0.02) 0.28$. Lower: log p v. x on x -axis.

$\because \pi$
H.
(Mikiantil \therefore.

Fig 2

Fig 4

Fig 5

ORGGins!!

ORE: AL $\therefore \therefore$ IS POOR

Fig 8

$$
\begin{aligned}
& \text { RLEME }
\end{aligned}
$$

Fig 9
 OEGGLAL FAtR IS POOR

Fig 10
I
O.wunith i Ant IS POOR

Fig 11

$F_{i g} 12$

$F_{1 j} 13$

Fig 14

