6 research outputs found
Fanconi anemia proteins function in mitophagy and immunity
Fanconi anemia (FA) pathway genes are important tumor suppressors whose best-characterized function is repair of damaged nuclear DNA. Here, we describe an essential role for FA genes in two forms of selective autophagy. Genetic deletion of Fancc blocks the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral encephalitis. Fanconi anemia complementation group C (FANCC) protein interacts with Parkin, is required in vitro and in vivo for clearance of damaged mitochondria, and decreases mitochondrial reactive oxygen species (ROS) production and inflammasome activation. The mitophagy function of FANCC is genetically distinct from its role in genomic DNA damage repair. Moreover, additional genes in the FA pathway, including FANCA, FANCF, FANCL, FANCD2, BRCA1, and BRCA2, are required for mitophagy. Thus, members of the FA pathway represent a previously undescribed class of selective autophagy genes that function in immunity and organellar homeostasis. These findings have implications for understanding the pathogenesis of FA and cancers associated with mutations in FA genes
Fanconi anemia proteins function in mitophagy and immunity
Fanconi anemia (FA) pathway genes are important tumor suppressors whose best-characterized function is repair of damaged nuclear DNA. Here, we describe an essential role for FA genes in two forms of selective autophagy. Genetic deletion of Fancc blocks the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral encephalitis. Fanconi anemia complementation group C (FANCC) protein interacts with Parkin, is required in vitro and in vivo for clearance of damaged mitochondria, and decreases mitochondrial reactive oxygen species (ROS) production and inflammasome activation. The mitophagy function of FANCC is genetically distinct from its role in genomic DNA damage repair. Moreover, additional genes in the FA pathway, including FANCA, FANCF, FANCL, FANCD2, BRCA1, and BRCA2, are required for mitophagy. Thus, members of the FA pathway represent a previously undescribed class of selective autophagy genes that function in immunity and organellar homeostasis. These findings have implications for understanding the pathogenesis of FA and cancers associated with mutations in FA genes
Acetate Is a Bioenergetic Substrate for Human Glioblastoma and Brain Metastases
SummaryGlioblastomas and brain metastases are highly proliferative brain tumors with short survival times. Previously, using 13C-NMR analysis of brain tumors resected from patients during infusion of 13C-glucose, we demonstrated that there is robust oxidation of glucose in the citric acid cycle, yet glucose contributes less than 50% of the carbons to the acetyl-CoA pool. Here, we show that primary and metastatic mouse orthotopic brain tumors have the capacity to oxidize [1,2-13C]acetate and can do so while simultaneously oxidizing [1,6-13C]glucose. The tumors do not oxidize [U-13C]glutamine. In vivo oxidation of [1,2-13C]acetate was validated in brain tumor patients and was correlated with expression of acetyl-CoA synthetase enzyme 2, ACSS2. Together, the data demonstrate a strikingly common metabolic phenotype in diverse brain tumors that includes the ability to oxidize acetate in the citric acid cycle. This adaptation may be important for meeting the high biosynthetic and bioenergetic demands of malignant growth