591 research outputs found

    Estimation of optimal number of gates in dual gated ¹⁸F-FDG cardiac PET

    Get PDF
    Gating of positron emission tomography images has been shown to reduce the motion effects, especially when imaging small targets, such as coronary plaques. However, the selection of optimal number of gates for gating remains a challenge. Selecting too high number of gates results in a loss of signal-to-noise ratio, while too low number of gates does remove only part of the motion. Here, we introduce a respiratory-cardiac motion model to determine the optimal number of respiratory and cardiac gates. We evaluate the model using a realistic heart phantom and data from 12 cardiac patients (47–77 years, 64.5 on average). To demonstrate the benefits of our model, we compared it with an existing respiratory model. Based on our study, the optimal number of gates was determined to be five respiratory and four cardiac gates in the phantom and patient studies. In the phantom study, the diameter of the most active hot spot was reduced by 24% in the dual gated images compared to non-gated images. In the patient study, the thickness of myocardium wall was reduced on average by 21%. In conclusion, the motion model can be used for estimating the optimal number of respiratory and cardiac gates for dual gating

    Depolymerization of biorefinery lignin by improved laccases of the white-rot fungus Obba rivulosa

    Get PDF
    Fungal laccases are attracting enzymes for sustainable valorization of biorefinery lignins. To improve the lignin oxidation capacity of two previously characterized laccase isoenzymes from the white-rot fungus Obba rivulosa, we mutated their substrate-binding site at T1. As a result, the pH optimum of the recombinantly produced laccase variant rOrLcc2-D206N shifted by three units towards neutral pH. O. rivulosa laccase variants with redox mediators oxidized both the dimeric lignin model compound and biorefinery poplar lignin. Significant structural changes, such as selective benzylic alpha-oxidation, were detected by nuclear magnetic resonance analysis, although no polymerization of lignin was observed by gel permeation chromatography. This suggests that especially rOrLcc2-D206N is a promising candidate for lignin-related applications.Peer reviewe

    Fungal Treatment Modifies Kraft Lignin for Lignin- and Cellulose-Based Carbon Fiber Precursors

    Get PDF
    The kraft lignin's low molecular weight and too high hydroxyl content hinder its application in bio-based carbon fibers. In this study, we were able to polymerize kraft lignin and reduce the amount of hydroxyl groups by incubating it with the white-rot fungus Obba rivulosa. Enzymatic radical oxidation reactions were hypothesized to induce condensation of lignin, which increased the amount of aromatic rings connected by carbon-carbon bonds. This modification is assumed to be beneficial when aiming for graphite materials such as carbon fibers. Furthermore, the ratio of remaining aliphatic hydroxyls to phenolic hydroxyls was increased, making the structure more favorable for carbon fiber production. When the modified lignin was mixed together with cellulose, the mixture could be spun into intact precursor fibers by using dry-jet wet spinning. The modified lignin leaked less to the spin bath compared with the unmodified lignin starting material, making the recycling of spin-bath solvents easier. The stronger incorporation of modified lignin in the precursor fibers was confirmed by composition analysis, thermogravimetry, and mechanical testing. This work shows how white-rot fungal treatment can be used to modify the structure of lignin to be more favorable for the production of bio-based fiber materials.Peer reviewe

    Change in antihypertensive drug prescribing after guideline implementation: a controlled before and after study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antihypertensive drug choices and treatment levels are not in accordance with the existing guidelines. We aimed to assess the impact of a guideline implementation intervention on antihypertensive drug prescribing.</p> <p>Methods</p> <p>In this controlled before and after study, the effects of a multifaceted (education, audit and feedback, local care pathway) quality programme was evaluated. The intervention was carried out in a health centre between 2002 and 2003. From each health care unit (n = 31), a doctor-nurse pair was trained to act as peer facilitators in the intervention.</p> <p>All antihypertensive drugs prescribed by 25 facilitator general practitioners (intervention GPs) and 53 control GPs were retrieved from the nationwide Prescription Register for three-month periods in 2001 and 2003. The proportions of patients receiving specific antihypertensive drugs and multiple antihypertensive drugs were measured before and after the intervention for three subgroups of hypertension patients: hypertension only, with coronary heart disease, and with diabetes.</p> <p>Results</p> <p>In all subgroups, the use of multiple concurrent medications increased. For intervention patients with hypertension only, the odds ratio (OR) was 1.12 (95% CI 0.99, 1.25; p = 0.06) and for controls 1.13 (1.05, 1.21; p = 0.002). We observed no statistically significant differences in the change in the prescribing of specific antihypertensive agents between the intervention and control groups. The use of agents acting on the renin-angiotensin-aldosterone system increased in all subgroups (hypertension only intervention patients OR 1.19 (1.06, 1.34; p = 0.004) and controls OR 1.24 (1.15, 1.34; p < 0.0001).</p> <p>Conclusions</p> <p>A multifaceted guideline implementation intervention does not necessarily lead to significant changes in prescribing performance. Rigorous planning of the interventions and quality projects and their evaluation are essential.</p

    Solar eclipse demonstrating the importance of photochemistry in new particle formation

    Get PDF
    Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that this phenomenon had prominent effects on atmospheric on-going NPF. During the eclipse, the sources of aerosol precursor gases, such as sulphuric acid and nitrogen-containing highly oxidised organic compounds, decreased considerably, which was followed by a reduced formation of small clusters and nanoparticles and thus termination of NPF. After the eclipse, aerosol precursor molecule concentrations recovered and reinitiated NPF. Our results provide direct evidence on the key role of the photochemical production of sulphuric acid and highly oxidized organic compounds in maintaining atmospheric NPF. Our results also explain the rare occurrence of this phenomenon under dark conditions, as well as its seemingly weak connection with atmospheric ions.Peer reviewe

    Aging and serum exomiR content in women-effects of estrogenic hormone replacement therapy

    Get PDF
    Exosomes participate in intercellular messaging by transporting bioactive lipid-, protein-and RNA-molecules and -complexes. The contents of the exosomes reflect the physiological status of an individual making exosomes promising targets for biomarker analyses. In the present study we extracted exosome microRNAs (exomiRs) from serum samples of premenopausal women (n = 8) and monozygotic postmenopausal twins (n = 10 female pairs), discordant for the use of estrogenic hormone replacement therapy (HRT), in order to see whether the age or/and the use of HRT associates with exomiR content. A total of 241 exomiRs were detected by next generation sequencing, 10 showing age, 14 HRT and 10 age + HRT-related differences. When comparing the groups, differentially expressed miRs were predicted to affect cell proliferation processes showing inactivation with younger age and HRT usage. MiR-106-5p, -148a-3p, -27-3p, -126-5p, -28-3p and -30a-5p were significantly associated with serum 17 beta-estradiol. MiRs formed two hierarchical clusters being indicative of positive or negative health outcomes involving associations with body composition, serum 17 beta-estradiol, fat-, glucose-and inflammatory markers. Circulating exomiR clusters, obtained by NGS, could be used as indicators of metabolic and inflammatory status affected by hormonal changes at menopause. Furthermore, the individual effects of HRT-usage could be evaluated based on the serum exomiR signature

    A Patient-Derived Cell Atlas Informs Precision Targeting of Glioblastoma

    Get PDF
    Glioblastoma (GBM) is a malignant brain tumor with few therapeutic options. The disease presents with a complex spectrum of genomic aberrations, but the pharmacological consequences of these aberrations are partly unknown. Here, we report an integrated pharmacogenomic analysis of 100 patient-derived GBM cell cultures from the human glioma cell culture (HGCC) cohort. Exploring 1,544 drugs, we find that GBM has two main pharmacological subgroups, marked by differential response to proteasome inhibitors and mutually exclusive aberrations in TP53 and CDKN2A/B. We confirm this trend in cell and in xenotransplantation models, and identify both Bcl-2 family inhibitors and p53 activators as potentiators of proteasome inhibitors in GBM cells, We can further predict the responses of individual cell cultures to several existing drug classes, presenting opportunities for drug repurposing and design of stratified trials. Our functionally profiled biobank provides a valuable resource for the discovery of new treatments for GBM.Patrik Johansson, Cecilia Krona and Soumi Kundu share first authorship</p

    Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles

    Get PDF
    Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations

    Control of the hydrogen : deuterium isotope mixture using pellets in JET

    Get PDF
    Deuterium pellets are injected into an initially pure hydrogen H-mode plasma in order to control the hydrogen: deuterium (H:D) isotope mixture. The pellets are deposited in the outer 20% of the minor radius, similar to that expected in ITER, creating transiently hollow electron density profiles. A H: D isotope mixture of approximately 45%:55% is obtained in the core with a pellet fuelling throughput of Phi(pel) = 0.045P(aux)/T-e,T-ped similar to previous pellet fuelling experiments in pure deuterium. Evolution of the H: D mix in the core is reproduced using a simple model, although deuterium transport could be higher at the beginning of the pellet train compared with the flat-top phase.Peer reviewe

    Modification of the Alfven wave spectrum by pellet injection

    Get PDF
    Alfven eigenmodes driven by energetic particles are routinely observed in tokamak plasmas. These modes consist of poloidal harmonics of shear Alfven waves coupled by inhomogeneity in the magnetic field. Further coupling is introduced by 3D inhomogeneities in the ion density during the assimilation of injected pellets. This additional coupling modifies the Alfven continuum and discrete eigenmode spectrum. The frequencies of Alfven eigenmodes drop dramatically when a pellet is injected in JET. From these observations, information about the changes in the ion density caused by a pellet can be inferred. To use Alfven eigenmodes for MHD spectroscopy of pellet injected plasmas, the 3D MILD codes Stellgap and AE3D were generalised to incorporate 3D density profiles. A model for the expansion of the ionised pellet plasmoid along a magnetic field line was derived from the fluid equations. Thereby, the time evolution of the Alfven eigenfrequency is reproduced. By comparing the numerical frequency drop of a toroidal Alfven eigenmode (TAE) to experimental observations, the initial ion density of a cigar-shaped ablation region of length 4cm is estimated to be n(*) = 6.8 x 10(22) m(-3) at the TAE location (r/a approximate to 0.75). The frequency sweeping of an Alfven eigenmode ends when the ion density homogenises poloidally. Modelling suggests that the time for poloidal homogenisation of the ion density at the TAE position is tau(h) = 18 +/- 4 ms for inboard pellet injection, and tau(h) = 26 +/- 2 ms for outboard pellet injection. By reproducing the frequency evolution of the elliptical Alfven eigemnode (EAE), the initial ion density at the EAE location (r/a approximate to 0.9) can be estimated to be n(*) = 4.8 x 10(22) m(-3). Poloidal homogenisation of the ion density takes 2.7 times longer at the EAE location than at the TAE location for both inboard and outboard pellet injection.Peer reviewe
    corecore