21 research outputs found

    Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo

    Get PDF
    AbstractThe mammalian kidney consists of an array of tubules connected to a ductal system that collectively function to control water/salt balance and to remove waste from the organisms' circulatory system. During mammalian embryogenesis, three kidney structures form within the intermediate mesoderm. The two most anterior structures, the pronephros and the mesonephros, are transitory and largely non-functional, while the most posterior, the metanephros, persists as the adult kidney. We have explored the mechanisms underlying regional specific differentiation of the kidney forming mesoderm. Previous studies have shown a requirement for Hox11 paralogs (Hoxa11, Hoxc11 and Hoxd11) in metanephric development. Mice lacking all Hox11 activity fail to form metanephric kidney structures. We demonstrate that the Hox11 paralog expression is restricted in the intermediate mesoderm to the posterior, metanephric level. When Hoxd11 is ectopically activated in the anterior mesonephros, we observe a partial transformation to a metanephric program of development. Anterior Hoxd11+ cells activate Six2, a transcription factor required for the maintenance of metanephric tubule progenitors. Additionally, Hoxd11+ mesonephric tubules exhibit an altered morphology and activate several metanephric specific markers normally confined to distal portions of the functional nephron. Collectively, our data support a model where Hox11 paralogs specify a metanephric developmental program in responsive intermediate mesoderm. This program maintains tubule forming progenitors and instructs a metanephric specific pattern of nephron differentiation

    Randomized controlled trials in de-implementation research : a systematic scoping review

    Get PDF
    Background: Healthcare costs are rising, and a substantial proportion of medical care is of little value. De-implementation of low-value practices is important for improving overall health outcomes and reducing costs. We aimed to identify and synthesize randomized controlled trials (RCTs) on de-implementation interventions and to provide guidance to improve future research. Methods: MEDLINE and Scopus up to May 24, 2021, for individual and cluster RCTs comparing de-implementation interventions to usual care, another intervention, or placebo. We applied independent duplicate assessment of eligibility, study characteristics, outcomes, intervention categories, implementation theories, and risk of bias. Results: Of the 227 eligible trials, 145 (64%) were cluster randomized trials (median 24 clusters; median follow-up time 305 days), and 82 (36%) were individually randomized trials (median follow-up time 274 days). Of the trials, 118 (52%) were published after 2010, 149 (66%) were conducted in a primary care setting, 163 (72%) aimed to reduce the use of drug treatment, 194 (85%) measured the total volume of care, and 64 (28%) low-value care use as outcomes. Of the trials, 48 (21%) described a theoretical basis for the intervention, and 40 (18%) had the study tailored by context-specific factors. Of the de-implementation interventions, 193 (85%) were targeted at physicians, 115 (51%) tested educational sessions, and 152 (67%) multicomponent interventions. Missing data led to high risk of bias in 137 (60%) trials, followed by baseline imbalances in 99 (44%), and deficiencies in allocation concealment in 56 (25%). Conclusions: De-implementation trials were mainly conducted in primary care and typically aimed to reduce low-value drug treatments. Limitations of current de-implementation research may have led to unreliable effect estimates and decreased clinical applicability of studied de-implementation strategies. We identified potential research gaps, including de-implementation in secondary and tertiary care settings, and interventions targeted at other than physicians. Future trials could be improved by favoring simpler intervention designs, better control of potential confounders, larger number of clusters in cluster trials, considering context-specific factors when planning the intervention (tailoring), and using a theoretical basis in intervention design. Registration: OSF Open Science Framework hk4b2.publishedVersionPeer reviewe

    Gremlin-1 Overexpression in Mouse Lung Reduces Silica-Induced Lymphocyte Recruitment - A Link to Idiopathic Pulmonary Fibrosis through Negative Correlation with CXCL10 Chemokine

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is characterized by activation and injury of epithelial cells, the accumulation of connective tissue and changes in the inflammatory microenvironment. The bone morphogenetic protein (BMP) inhibitor protein gremlin-1 is associated with the progression of fibrosis both in human and mouse lung. We generated a transgenic mouse model expressing gremlin-1 in type II lung epithelial cells using the surfactant protein C (SPC) promoter and the Cre-LoxP system. Gremlin-1 protein expression was detected specifically in the lung after birth and did not result in any signs of respiratory insufficiency. Exposure to silicon dioxide resulted in reduced amounts of lymphocyte aggregates in transgenic lungs while no alteration in the fibrotic response was observed. Microarray gene expression profiling and analyses of bronchoalveolar lavage fluid cytokines indicated a reduced lymphocytic response and a downregulation of interferon-induced gene program. Consistent with reduced Th1 response, there was a downregulation of the mRNA and protein expression of the anti-fibrotic chemokine CXCL10, which has been linked to IPF. In human IPF patient samples we also established a strong negative correlation in the mRNA expression levels of gremlin-1 and CXCL10. Our results suggest that in addition to regulation of epithelial-mesenchymal crosstalk during tissue injury, gremlin-1 modulates inflammatory cell recruitment and anti-fibrotic chemokine production in the lung.Peer reviewe

    Androgen receptor SUMOylation regulates bone mass in male mice

    No full text
    Abstract The crucial effects of androgens on the male skeleton are at least partly mediated via the androgen receptor (AR). In addition to hormone binding, the AR activity is regulated by post-translational modifications, including SUMOylation. SUMOylation is a reversible modification in which Small Ubiquitin-related MOdifier proteins (SUMOs) are attached to the AR and thereby regulate the activity of the AR and change its interactions with other proteins. To elucidate the importance of SUMOylation of AR for male bone metabolism, we used a mouse model devoid of the two AR SUMOylation sites (ARSUM−; K381R and K500R are substituted). Six-month-old male ARSUM− mice displayed significantly reduced trabecular bone volume fraction in the distal metaphyseal region of femur compared with wild type (WT) mice (BV/TV, −19.1 ± 4.9%, P < 0.05). The number of osteoblasts per bone perimeter was substantially reduced (−60.5 ± 7.2%, P < 0.001) while no significant effect was observed on the number of osteoclasts in the trabecular bone of male ARSUM− mice. Dynamic histomorphometric analysis of trabecular bone revealed a reduced bone formation rate (−32.6 ± 7.4%, P < 0.05) as a result of reduced mineralizing surface per bone surface in ARSUM− mice compared with WT mice (−24.3 ± 3.6%, P < 0.001). Furthermore, cortical bone thickness in the diaphyseal region of femur was reduced in male ARSUM− mice compared with WT mice (−7.3 ± 2.0%, P < 0.05). In conclusion, mice devoid of AR SUMOylation have reduced trabecular bone mass as a result of reduced bone formation. We propose that therapies enhancing AR SUMOylation might result in bone-specific anabolic effects with minimal adverse effects in other tissues

    The RNA-binding protein Snd1/Tudor-SN regulates hypoxia-responsive gene expression

    No full text
    Abstract Snd1 is an evolutionarily conserved RNA-binding protein implicated in several regulatory processes in gene expression including activation of transcription, mRNA splicing, and microRNA decay. Here, we have investigated the outcome of Snd1 gene deletion in the mouse. The knockout mice are viable showing no gross abnormalities apart from decreased fertility, organ and body size, and decreased number of myeloid cells concomitant with decreased expression of granule protein genes. Deletion of Snd1 affected the expression of relatively small number of genes in spleen and liver. However, mRNA expression changes in the knockout mouse liver showed high similarity to expression profile in adaptation to hypoxia. MicroRNA expression in liver showed upregulation of the hypoxia-induced microRNAs miR-96 and -182. Similar to Snd1 deletion, mimics of miR-96/182 enhanced hypoxia-responsive reporter activity. To further elucidate the function of SND1, BioID biotin proximity ligation assay was performed in HEK-293T cells to identify interacting proteins. Over 50% of the identified interactors were RNA-binding proteins, including stress granule proteins. Taken together, our results show that in normal growth conditions, Snd1 is not a critical factor for mRNA transcription in the mouse, and describe a function for Snd1 in hypoxia adaptation through negatively regulating hypoxia-related miRNAs and hypoxia-induced transcription consistent with a role as stress response regulator

    Scanning transmission soft X-ray spectromicroscopy of mouse kidney and liver

    No full text
    Abstract Scanning transmission X-ray microscopy (STXM) in the soft X-ray range is well-suited to study ultrastructural features of mammalian soft tissues. Especially at the carbon 1s edge, the imaging contrast varies drastically across the edge due to rapid changes in the X-ray absorption cross-section of functional groups present in the tissue samples enabling label-free soft X-ray spectromicroscopic studies. We present STXM spectromicroscopic imaging of mouse kidney and liver tissues. We especially concentrate on ultrastructural abnormalities in genetically modified Slc17a5 mice. STXM is a promising technique to study storage diseases without chemical alteration due to staining agents, but sample preparation poses a challenge

    Reporting of costs and economic impacts in randomized trials of de-implementation interventions for low-value care: a systematic scoping review

    Get PDF
    Abstract Background De-implementation of low-value care can increase health care sustainability. We evaluated the reporting of direct costs of de-implementation and subsequent change (increase or decrease) in health care costs in randomized trials of de-implementation research. Methods We searched MEDLINE and Scopus databases without any language restrictions up to May 2021. We conducted study screening and data extraction independently and in duplicate. We extracted information related to study characteristics, types and characteristics of interventions, de-implementation costs, and impacts on health care costs. We assessed risk of bias using a modified Cochrane risk-of-bias tool. Results We screened 10,733 articles, with 227 studies meeting the inclusion criteria, of which 50 included information on direct cost of de-implementation or impact of de-implementation on health care costs. Studies were mostly conducted in North America (36%) or Europe (32%) and in the primary care context (70%). The most common practice of interest was reduction in the use of antibiotics or other medications (74%). Most studies used education strategies (meetings, materials) (64%). Studies used either a single strategy (52%) or were multifaceted (48%). Of the 227 eligible studies, 18 (8%) reported on direct costs of the used de-implementation strategy; of which, 13 reported total costs, and 12 reported per unit costs (7 reported both). The costs of de-implementation strategies varied considerably. Of the 227 eligible studies, 43 (19%) reported on impact of de-implementation on health care costs. Health care costs decreased in 27 studies (63%), increased in 2 (5%), and were unchanged in 14 (33%). Conclusion De-implementation randomized controlled trials typically did not report direct costs of the de-implementation strategies (92%) or the impacts of de-implementation on health care costs (81%). Lack of cost information may limit the value of de-implementation trials to decision-makers. Trial registration OSF (Open Science Framework): https://osf.io/ueq32

    Reporting of costs and economic impacts in randomized trials of de-implementation interventions for low-value care : a systematic scoping review

    No full text
    Background De-implementation of low-value care can increase health care sustainability. We evaluated the reporting of direct costs of de-implementation and subsequent change (increase or decrease) in health care costs in randomized trials of de-implementation research.Methods We searched MEDLINE and Scopus databases without any language restrictions up to May 2021. We conducted study screening and data extraction independently and in duplicate. We extracted information related to study characteristics, types and characteristics of interventions, de-implementation costs, and impacts on health care costs. We assessed risk of bias using a modified Cochrane risk-of-bias tool.Results We screened 10,733 articles, with 227 studies meeting the inclusion criteria, of which 50 included information on direct cost of de-implementation or impact of de-implementation on health care costs. Studies were mostly conducted in North America (36%) or Europe (32%) and in the primary care context (70%). The most common practice of interest was reduction in the use of antibiotics or other medications (74%). Most studies used education strategies (meetings, materials) (64%). Studies used either a single strategy (52%) or were multifaceted (48%). Of the 227 eligible studies, 18 (8%) reported on direct costs of the used de-implementation strategy; of which, 13 reported total costs, and 12 reported per unit costs (7 reported both). The costs of de-implementation strategies varied considerably. Of the 227 eligible studies, 43 (19%) reported on impact of de-implementation on health care costs. Health care costs decreased in 27 studies (63%), increased in 2 (5%), and were unchanged in 14 (33%).Conclusion De-implementation randomized controlled trials typically did not report direct costs of the de-implementation strategies (92%) or the impacts of de-implementation on health care costs (81%). Lack of cost information may limit the value of de-implementation trials to decision-makers.Peer reviewe

    Randomized controlled trials in de-implementation research:a systematic scoping review

    No full text
    Abstract Background: Healthcare costs are rising, and a substantial proportion of medical care is of little value. De-implementation of low-value practices is important for improving overall health outcomes and reducing costs. We aimed to identify and synthesize randomized controlled trials (RCTs) on de-implementation interventions and to provide guidance to improve future research. Methods: MEDLINE and Scopus up to May 24, 2021, for individual and cluster RCTs comparing de-implementation interventions to usual care, another intervention, or placebo. We applied independent duplicate assessment of eligibility, study characteristics, outcomes, intervention categories, implementation theories, and risk of bias. Results: Of the 227 eligible trials, 145 (64%) were cluster randomized trials (median 24 clusters; median follow-up time 305 days), and 82 (36%) were individually randomized trials (median follow-up time 274 days). Of the trials, 118 (52%) were published after 2010, 149 (66%) were conducted in a primary care setting, 163 (72%) aimed to reduce the use of drug treatment, 194 (85%) measured the total volume of care, and 64 (28%) low-value care use as outcomes. Of the trials, 48 (21%) described a theoretical basis for the intervention, and 40 (18%) had the study tailored by context-specific factors. Of the de-implementation interventions, 193 (85%) were targeted at physicians, 115 (51%) tested educational sessions, and 152 (67%) multicomponent interventions. Missing data led to high risk of bias in 137 (60%) trials, followed by baseline imbalances in 99 (44%), and deficiencies in allocation concealment in 56 (25%). Conclusions: De-implementation trials were mainly conducted in primary care and typically aimed to reduce low-value drug treatments. Limitations of current de-implementation research may have led to unreliable effect estimates and decreased clinical applicability of studied de-implementation strategies. We identified potential research gaps, including de-implementation in secondary and tertiary care settings, and interventions targeted at other than physicians. Future trials could be improved by favoring simpler intervention designs, better control of potential confounders, larger number of clusters in cluster trials, considering context-specific factors when planning the intervention (tailoring), and using a theoretical basis in intervention design
    corecore