457 research outputs found

    Scalable magnet geometries enhance tumour targeting of magnetic nano-carriers

    Get PDF
    Targeted drug delivery systems aim to increase therapeutic effect within the target tissue or organ, while reducing off-target toxicity associated with systemic delivery. Magnetic drug targeting has been shown to be an effective strategy by manipulating therapeutics inside the body using a magnetic field and an iron oxide carrier. However, the effective targeting range of current magnets limits this method to small animal experiments or superficial parts of the human body. Here we produce clinically translatable magnet designs capable of increasing exposure of tissue to magnetic fields and field gradients, leading to increased carrier accumulation. The iron oxide nanoparticle capturing efficiency was first assessed in vitro using a simple vascular flow system. Secondly, accumulation of these particles, following magnetic targeting, was evaluated in vivo using a range of different magnet designs. We observed that our bespoke magnet produced a 4-fold increase in effective targeting depth when compared to a conventional 1 T disk magnet. Finally, we show that this magnet is readily scalable to human size proportions and has the potential to target 100 nm particles up to a depth of 7 cm at specific locations of human body

    OriDB, the DNA replication origin database updated and extended

    Get PDF
    OriDB (http://www.oridb.org/) is a database containing collated genome-wide mapping studies of confirmed and predicted replication origin sites. The original database collated and curated Saccharomyces cerevisiae origin mapping studies. Here, we report that the OriDB database and web site have been revamped to improve user accessibility to curated data sets, to greatly increase the number of curated origin mapping studies, and to include the collation of replication origin sites in the fission yeast Schizosaccharomyces pombe. The revised database structure underlies these improvements and will facilitate further expansion in the future. The updated OriDB for S. cerevisiae is available at http://cerevisiae.oridb.org/ and for S. pombe at http://pombe.oridb.org/

    Eating dysfunction associated with oromandibular dystonia: clinical characteristics and treatment considerations

    Get PDF
    BACKGROUND: In oromandibular dystonia (OMD) abnormal repetitive contractions of masticatory, facial, and lingual muscles as well as the presence of orobuccolingual (OBL) dyskinesias may interfere with the appropriate performance of tasks such as chewing and swallowing leading to significant dysphagia and weight loss. We present here the clinical characteristics and treatment variables of a series of patients that developed an OMD-associated eating dysfunction. METHODS: We present a series of patients diagnosed and followed-up at the Movement Disorders Clinic of the Department of Neurology of University of Miami, Miller School of Medicine over a 10-year period. Patients were treated with botulinum toxin injections according to standard methods. RESULTS: Five out of 32 (15.6%) OMD patients experienced symptoms of eating dysfunction associated with OMD. Significant weight loss was reported in 3/5 patients (ranged for 13–15 lbs). Two patients regained the lost weight after treatment and one was lost to follow-up. Tetrabenazine in combination with other antidystonic medication and/or botulinum toxin injections provided substantial benefit to the patients with dysphagia caused by OMD. CONCLUSION: Dystonic eating dysfunction may occasionally complicate OMD leading to weight loss. Its adequate characterization at the time of history taking and clinical examination should be part of outcome measurements of the anti-dystonic treatment in clinical practice

    Whole genome sequencing for the genetic diagnosis of heterogenous dystonia phenotypes

    Get PDF
    Introduction: Dystonia is a clinically and genetically heterogeneous disorder and a genetic cause is often difficult to elucidate. This is the first study to use whole genome sequencing (WGS) to investigate dystonia in a large sample of affected individuals. Methods: WGS was performed on 111 probands with heterogenous dystonia phenotypes. We performed analysis for coding and non-coding variants, copy number variants (CNVs), and structural variants (SVs). We assessed for an association between dystonia and 10 known dystonia risk variants. Results: A genetic diagnosis was obtained for 11.7% (13/111) of individuals. We found that a genetic diagnosis was more likely in those with an earlier age at onset, younger age at testing, and a combined dystonia phenotype. We identified pathogenic/likely-pathogenic variants in ADCY5 (n = 1), ATM (n = 1), GNAL (n = 2), GLB1 (n = 1), KMT2B (n = 2), PRKN (n = 2), PRRT2 (n = 1), SGCE (n = 2), and THAP1 (n = 1). CNVs were detected in 3 individuals. We found an association between the known risk variant ARSG rs11655081 and dystonia (p = 0.003). Conclusion: A genetic diagnosis was found in 11.7% of individuals with dystonia. The diagnostic yield was higher in those with an earlier age of onset, younger age at testing, and a combined dystonia phenotype. WGS may be particularly relevant for dystonia given that it allows for the detection of CNVs, which accounted for 23% of the genetically diagnosed cases. © 2019 The Author

    A mouse model with a frameshift mutation in the nuclear factor I/X (NFIX) gene has phenotypic features of Marshall-Smith syndrome

    Get PDF
    The nuclear factor I/X (NFIX) gene encodes a ubiquitously expressed transcription factor whose mutations lead to two allelic disorders characterized by developmental, skeletal, and neural abnormalities, namely, Malan syndrome (MAL) and Marshall–Smith syndrome (MSS). NFIX mutations associated with MAL mainly cluster in exon 2 and are cleared by nonsense-mediated decay (NMD) leading to NFIX haploinsufficiency, whereas NFIX mutations associated with MSS are clustered in exons 6–10 and escape NMD and result in the production of dominant-negative mutant NFIX proteins. Thus, different NFIX mutations have distinct consequences on NFIX expression. To elucidate the in vivo effects of MSS-associated NFIX exon 7 mutations, we used CRISPR-Cas9 to generate mouse models with exon 7 deletions that comprised: a frameshift deletion of two nucleotides (Nfix Del2); in-frame deletion of 24 nucleotides (Nfix Del24); and deletion of 140 nucleotides (Nfix Del140). Nfix+/Del2, Nfix+/Del24, Nfix+/Del140, NfixDel24/Del24, and NfixDel140/Del140 mice were viable, normal, and fertile, with no skeletal abnormalities, but NfixDel2/Del2 mice had significantly reduced viability (p Nfix Del2 was not cleared by NMD, and NfixDel2/Del2 mice, when compared to Nfix+/+ and Nfix+/Del2 mice, had: growth retardation; short stature with kyphosis; reduced skull length; marked porosity of the vertebrae with decreased vertebral and femoral bone mineral content; and reduced caudal vertebrae height and femur length. Plasma biochemistry analysis revealed NfixDel2/Del2 mice to have increased total alkaline phosphatase activity but decreased C-terminal telopeptide and procollagen-type-1-N-terminal propeptide concentrations compared to Nfix+/+ and Nfix+/Del2 mice. NfixDel2/Del2 mice were also found to have enlarged cerebral cortices and ventricular areas but smaller dentate gyrus compared to Nfix+/+ mice. Thus, NfixDel2/Del2 mice provide a model for studying the in vivo effects of NFIX mutants that escape NMD and result in developmental abnormalities of the skeletal and neural tissues that are associated with MSS

    Association of Methylentetraydrofolate Reductase (MTHFR) 677 C > T gene polymorphism and homocysteine levels in psoriasis vulgaris patients from Malaysia: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The methylenetetrahydrofolate reductase (MTHFR) enzyme catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and methyl donors. The methyl donors are required for the conversion of homocysteine to methionine. Mutation of MTHFR 677 C > T disrupts its thermostability therefore leads to defective enzyme activities and dysregulation of homocysteine levels.</p> <p>Methods</p> <p>This case-control study (n = 367) was conducted to investigate the correlation of the MTHFR gene polymorphism [NM_005957] and psoriasis vulgaris amongst the Malaysian population. Overnight fasting blood samples were collected from a subgroup of consented psoriasis vulgaris patients and matched controls (n = 84) for the quantification of homocysteine, vitamin B<sub>12 </sub>and folic acid levels.</p> <p>Results</p> <p>There was no significant increase of the MTHFR 677 C > T mutation in patients with psoriasis vulgaris compared with controls (<it>χ</it><sup>2 </sup>= 0.733, p = 0.392). No significant association between homocysteine levels and MTHFR gene polymorphism in cases and controls were observed (F = 0.91, df = 3, 80, p = 0.44). However, homocysteine levels in cases were negatively correlated with vitamin B<sub>12 </sub>(r = -0.173) and folic acid (r = -0.345) levels. Vitamin B<sub>12 </sub>and folic acid levels in cases were also negatively correlated (r = -0.164).</p> <p>Conclusions</p> <p>Our results indicate that there was no significant association between the MTHFR gene polymorphism and psoriasis vulgaris in the Malaysian population. There was no significant increase of the plasma homocysteine level in the psoriasis patients compared to the controls.</p
    corecore