160 research outputs found

    Left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation reduces the development of long-term muscle pain

    Get PDF
    The left dorsolateral prefrontal cortex (DLPFC) is involved in the experience and modulation of pain, and may be an important node linking pain and cognition. Repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC can reduce chronic and experimental pain. However, whether left DLPFC rTMS can influence the development of chronic pain is unknown. Using repeated intramuscular injection of nerve growth factor to induce the development of sustained muscle pain (lasting weeks), 30 healthy individuals were randomized to receive 5 consecutive daily treatments of active or sham left DLPFC rTMS, starting before the first nerve growth factor injection on day 0. Muscle soreness and pain severity were collected daily for 14 days and disability on every alternate day. Before the first and 1 day after the last rTMS session, anxiety, depression, affect, pain catastrophizing, and cognitive performance on the attention network test were assessed. Left DLPFC rTMS treatment compared with sham was associated with reduced muscle soreness, pain intensity, and painful area (P < 0.05), and a similar trend was observed for disability. These effects were most evident during the days rTMS was applied lasting up to 3 days after intervention. Depression, anxiety, pain catastrophizing, and affect were unchanged. There was a trend toward improved cognitive function with rTMS compared with sham (P = 0.057). These data indicate that repeated left DLPFC rTMS reduces the pain severity in a model of prolonged muscle pain. The findings may have implications for the development of sustained pain in clinical populations

    High frequency repetitive transcranial magnetic stimulation to the left dorsolateral prefrontal cortex modulates sensorimotor cortex function in the transition to sustained muscle pain

    Get PDF
    Based on reciprocal connections between the dorsolateral prefrontal cortex (DLPFC) and basal-ganglia regions associated with sensorimotor cortical excitability, it was hypothesized that repetitive transcranial magnetic stimulation (rTMS) of the left DLPFC would modulate sensorimotor cortical excitability induced by muscle pain. Muscle pain was provoked by injections of nerve growth factor (end of Day-0 and Day-2) into the right extensor carpi radialis brevis (ECRB) muscle in two groups of 15 healthy participants receiving 5 daily sessions (Day-0 to Day-4) of active or sham rTMS. Muscle pain scores and pressure pain thresholds (PPTs) were collected (Day-0, Day-3, Day-5). Assessment of motor cortical excitability using TMS (mapping cortical ECRB muscle representation) and somatosensory evoked potentials (SEPs) from electrical stimulation of the right radial nerve were recorded at Day-0 and Day-5. At Day-0 versus Day-5, the sham compared to active group showed: Higher muscle pain scores and reduced PPTs (P < 0.04); decreased frontal N30 SEP (P < 0.01); increased TMS map volume (P < 0.03). These results indicate that muscle pain exerts modulatory effects on the sensorimotor cortical excitability and left DLPFC rTMS has analgesic effects and modulates pain-induced sensorimotor cortical adaptations. These findings suggest an important role of prefrontal to basal-ganglia function in sensorimotor cortical excitability and pain processing

    Movement does not promote recovery of motor output following acute experimental muscle pain

    Get PDF
    Objective. To examine the effect of motor activity on the magnitude and duration of altered corticomotor output following experimental muscle pain. Design. Experimental, pre-post test. Setting. University laboratory. Subjects. Twenty healthy individuals. Methods. Participants were randomly allocated to a Rest or Movement group. The Rest group sat quietly without moving for the duration of the experiment. The Movement group repeated a unimanual pattern of five sequential keystrokes as quickly and as accurately as possible immediately following the resolution of pain. Pain was induced into the right extensor carpi radialis brevis muscle by a bolus injection of 0.5 mL hypertonic saline. Corticomotor output was assessed as motor evoked potentials in response to transcranial magnetic stimulation before, immediately after, and at 10, 20, and 30 minutes following pain resolution. Pain intensity was recorded every 30 seconds using an 11-point numerical rating scale. Results. There was no difference in peak pain intensity (P < 0.09) or duration (P < 0.2) between groups. Corticomotor output was reduced in both groups (P < 0.002) at 10 minutes (P < 0.002), 20 minutes (P < 0.02), and 30 minutes (P < 0.037) following the resolution of pain relative to baseline. There was no difference between groups at any time point. Conclusions. Performance of motor activity immediately following the resolution of acute muscle pain did not alter the magnitude or duration of corticomotor depression. Understanding corticomotor depression in the postpain period and what factors promote recovery has relevance for clinical pain syndromes where ongoing motor dysfunction, in the absence of pain, may predispose to symptom persistence or recurrence

    Systemic pro- and anti-inflammatory profiles in acute non-specific low back pain : an exploratory longitudinal study of the relationship to six-month outcome

    Get PDF
    Objectives: Pro-inflammatory molecules are thought to underpin the development of chronic low back pain (LBP). Although research has begun to explore the association between pro-inflammatory molecules in acute LBP and long-term outcome, no study has explored the role of anti-inflammatory molecules. We aimed to explore whether levels of systemic pro- and anti-inflammatory molecules 1) changed over a period of six months from the onset of acute LBP; 2) differed between people who were recovered (N = 11) and unrecovered (N = 24) from their episode of LBP at six months; 3) baseline psychological factors were related to inflammatory molecule serum concentrations at baseline, three and six months. Methods: We retrospectively included participants with acute LBP included from a larger prospective trial and examined blood samples for the measurement of pro- and anti-inflammatory molecules and measures of pain, disability, and psychological factors at baseline, three and six months. Results: The serum concentrations of pro- and anti-inflammatory molecules did not differ over time when compared between participants who recovered and those who did not recover at six month follow-up. At three months, the unrecovered group had higher interleukin (IL)-8 and IL-10 serum concentrations than the recovered group. Baseline psychological factors were not related to inflammatory molecules at any time point. Discussion: This exploratory study showed that levels of systemic inflammatory molecules did not change over the course of LBP, irrespective of whether people were recovered or unrecovered at six months. There was no relationship between acute-stage psychological factors and systemic inflammatory molecules. Further investigation is needed to elucidate the contribution of pro- and anti-inflammatory molecules to long-term LBP outcome

    The effect of electrical stimulation on corticospinal excitability is dependent on application duration: a same subject pre-post test design

    Get PDF
    Background: In humans, corticospinal excitability is known to increase following motor electrical stimulation (ES) designed to mimic a voluntary contraction. However, whether the effect is equivalent with different application durations and whether similar effects are apparent for short and long applications is unknown. The aim of this study was to investigate whether the duration of peripheral motor ES influenced its effect on corticospinal excitability

    Feasibility and safety of combining repetitive transcranial magnetic stimulation and quadriceps strengthening exercise for chronic pain in knee osteoarthritis: A study protocol for a pilot randomised controlled trial

    Get PDF
    Introduction Knee osteoarthritis is a leading cause of disability, resulting in pain and reduced quality of life. Exercise is the cornerstone of conservative management but effects are, at best, moderate. Early evidence suggests that repetitive transcranial magnetic stimulation (rTMS) applied over the primary motor cortex (M1) may improve the effect of exercise in knee osteoarthritis. This pilot study aims to (1) determine the feasibility, safety and participant-rated response to an intervention adding M1 rTMS to exercise in knee osteoarthritis; (2) elucidate physiological mechanisms in response to the intervention; (3) provide data to conduct a sample size calculation for a fully powered trial. Methods and analysis This is a pilot randomised, assessor-blind, therapist-blind and participant-blind, sham-controlled trial. Thirty individuals with painful knee osteoarthritis will be recruited and randomly allocated to receive either: (1) active rTMS+exercise or (2) sham rTMS+exercise intervention. Participants will receive 15 min of either active or sham rTMS immediately prior to 30 min of supervised muscle strengthening exercise (2×/week, 6 weeks) and complete unsupervised home exercises. Outcome measures of feasibility, safety, pain, function and physiological mechanisms will be assessed before and/or after the intervention. Feasibility and safety will be analysed using descriptive analysis. Within-group and between-group comparisons of pain and function will be conducted to examine trends of efficacy. Ethics and dissemination This study has been approved by the University of New South Wales Human Research Ethics Committee (HC210954). All participants will provide written informed consent. The study results will be submitted for peer-reviewed publication. Trial registration number ACTRN12621001712897p

    Is there a causal relationship between acute stage sensorimotor cortex activity and the development of chronic low back pain? : a protocol and statistical analysis plan

    Get PDF
    Introduction: Why some people develop chronic pain following an acute episode of low back pain is unknown. Recent cross-sectional studies have suggested a relationship between aberrant sensorimotor cortex activity and pain persistence. The UPWaRD (Understanding persistent Pain Where it ResiDes) cohort study is the first prospective, longitudinal investigation of sensorimotor cortex activity in low back pain. This paper describes the development of a causal model and statistical analysis plan for investigating the causal effect of sensorimotor cortex activity on the development of chronic low back pain. Methods and analysis: Sensorimotor cortex activity was assessed within 6 weeks of low back pain onset using somatosensory evoked potentials and transcranial magnetic stimulation mapping techniques. Chronic low back pain is defined as ongoing pain (Numerical Rating score ≥1) or disability (Roland Morris Disability Questionnaire score ≥3) at 6 months follow-up. Variables that could confound the relationship between sensorimotor cortex activity and chronic low back pain were identified using a directed acyclic graph and content expertise was used to specify known causal paths. The statistical model was developed ‘a priori’ to control for confounding variables identified in the directed acyclic graph, allowing an unbiased estimate of the causal effect of sensorimotor activity in acute low back pain on the development of chronic pain. The statistical analysis plan was finalised prior to follow-up of all participants and initiation of analysis. Ethics and dissemination: Ethical approval has been obtained from Western Sydney University Human Research Ethics Committee (H10465) and from Neuroscience Research Australia (SSA: 16/002). Dissemination will occur through presentations at national and international conferences and publications in international peer-reviewed journals. Trial registration number: ACTRN12619000002189 (retrospectively registered)

    A novel cortical biomarker signature for predicting pain sensitivity : protocol for the PREDICT longitudinal analytical validation study

    Get PDF
    Introduction: Temporomandibular disorder is a common musculoskeletal pain condition with development of chronic symptoms in 49% of patients. Although a number of biological factors have shown an association with chronic temporomandibular disorder in cross-sectional and case control studies, there are currently no biomarkers that can predict the development of chronic symptoms. The PREDICT study aims to undertake analytical validation of a novel peak alpha frequency (PAF) and corticomotor excitability (CME) biomarker signature using a human model of the transition to sustained myofascial temporomandibular pain (masseter intramuscular injection of nerve growth factor [NGF]). This article describes, a priori, the methods and analysis plan. Methods: This study uses a multisite longitudinal, experimental study to follow individuals for a period of 30 days as they progressively develop and experience complete resolution of NGF-induced muscle pain. One hundred fifty healthy participants will be recruited. Participants will complete twice daily electronic pain diaries from day 0 to day 30 and undergo assessment of pressure pain thresholds, and recording of PAF and CME on days 0, 2, and 5. Intramuscular injection of NGF will be given into the right masseter muscle on days 0 and 2. The primary outcome is pain sensitivity. Perspective: PREDICT is the first study to undertake analytical validation of a PAF and CME biomarker signature. The study will determine the sensitivity, specificity, and accuracy of the biomarker signature to predict an individual's sensitivity to pain

    It\u27s safe to move! A protocol for a randomised controlled trial investigating the effect of a video designed to increase people\u27s confidence becoming more active despite back pain

    Get PDF
    Introduction Social media provide promising contemporary platforms for sharing public health information with a broad audience. Before implementation, testing social media campaigns that are intended to engage audiences and initiate behaviour change is necessary. This trial aims to investigate the effectiveness of a public health campaign to increase people\u27s confidence in becoming more active despite low back pain in comparison with no intervention. Methods and analysis This is an online randomised controlled trial with two intervention groups and one control group in a 1:1:1 allocation. People over 18 years of age and fluent in English will be recruited via social media advertising. We developed a social media-based public health campaign to support recommendations for managing low back pain. The interventions are two videos. Participants in the control group will be asked questions about low back pain but will not view either video intervention. The primary outcome will be item 10 of the Pain Self-Efficacy Questionnaire, which asks participants to rate how confident they would feel to gradually become more active despite pain ranging from 0 (not at all confident) to 6 (completely confident). This outcome will be measured immediately in all participant groups. We will compare group mean of the three arms of the trial using univariate analyses of variance. Ethics and dissemination This trial has been prospectively registered with the Australian New Zealand Clinical Trials Registry. We obtained ethical approval from our institutions Human Research Ethics Committee before data collection. We will publish the results in a peer-reviewed medical journal and on institution websites

    Can non‐invasive brain stimulation modulate peak alpha frequency in the human brain? A systematic review and meta‐analysis

    Get PDF
    Peak alpha frequency (PAF), the dominant oscillatory frequency within the alpha range (8–12 Hz), is associated with cognitive function and several neurological conditions, including chronic pain. Manipulating PAF could offer valuable insight into the relationship between PAF and various functions and conditions, potentially providing new treatment avenues. This systematic review aimed to comprehensively synthesise effects of non‐invasive brain stimulation (NIBS) on PAF speed. Relevant studies assessing PAF pre‐ and post‐NIBS in healthy adults were identified through systematic searches of electronic databases (Embase, PubMed, PsychINFO, Scopus, The Cochrane Library) and trial registers. The Cochrane risk‐of‐bias tool was employed for assessing study quality. Quantitative analysis was conducted through pairwise meta‐analysis when possible; otherwise, qualitative synthesis was performed. The review protocol was registered with PROSPERO (CRD42020190512) and the Open Science Framework (https://osf.io/2yaxz/). Eleven NIBS studies were included, all with a low risk‐of‐bias, comprising seven transcranial alternating current stimulation (tACS), three repetitive transcranial magnetic stimulation (rTMS), and one transcranial direct current stimulation (tDCS) study. Meta‐analysis of active tACS conditions (eight conditions from five studies) revealed no significant effects on PAF (mean difference [MD] = −0.12, 95% CI = −0.32 to 0.08, p = 0.24). Qualitative synthesis provided no evidence that tDCS altered PAF and moderate evidence for transient increases in PAF with 10 Hz rTMS. However, it is crucial to note that small sample sizes were used, there was substantial variation in stimulation protocols, and most studies did not specifically target PAF alteration. Further studies are needed to determine NIBS's potential for modulating PAF
    corecore