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Abstract

Peak alpha frequency (PAF), the dominant oscillatory frequency within the

alpha range (8–12 Hz), is associated with cognitive function and several neuro-

logical conditions, including chronic pain. Manipulating PAF could offer valu-

able insight into the relationship between PAF and various functions and

conditions, potentially providing new treatment avenues. This systematic

review aimed to comprehensively synthesise effects of non-invasive brain stim-

ulation (NIBS) on PAF speed. Relevant studies assessing PAF pre- and post-

NIBS in healthy adults were identified through systematic searches of elec-

tronic databases (Embase, PubMed, PsychINFO, Scopus, The Cochrane

Library) and trial registers. The Cochrane risk-of-bias tool was employed for

assessing study quality. Quantitative analysis was conducted through pairwise

meta-analysis when possible; otherwise, qualitative synthesis was performed.

The review protocol was registered with PROSPERO (CRD42020190512) and

the Open Science Framework (https://osf.io/2yaxz/). Eleven NIBS studies were

included, all with a low risk-of-bias, comprising seven transcranial alternating
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current stimulation (tACS), three repetitive transcranial magnetic stimulation

(rTMS), and one transcranial direct current stimulation (tDCS) study. Meta-

analysis of active tACS conditions (eight conditions from five studies) revealed

no significant effects on PAF (mean difference [MD] = �0.12, 95% CI = �0.32

to 0.08, p = 0.24). Qualitative synthesis provided no evidence that tDCS altered

PAF and moderate evidence for transient increases in PAF with 10 Hz rTMS.

However, it is crucial to note that small sample sizes were used, there was sub-

stantial variation in stimulation protocols, and most studies did not specifically

target PAF alteration. Further studies are needed to determine NIBS’s poten-
tial for modulating PAF.

KEYWORD S
brain stimulation, dominant alpha frequency, electrical stimulation, individual alpha
frequency, magnetic stimulation

1 | INTRODUCTION

Alpha is the dominant oscillatory frequency (8–12 Hz)
recorded in the human brain using electroencephalogra-
phy (EEG) or magnetoencephalography (MEG) (Van
Diepen et al., 2019). The frequency exhibiting the high-
est power within the alpha range, termed the peak
alpha frequency (PAF) or individual alpha frequency
(IAF), is relatively stable within individuals (Kondacs &
Szab�o, 1999) and possesses a trait-like quality, with her-
itability accounting for a significant portion (71–83%) of
the variance in PAF across individuals (Posthuma
et al., 2001). Faster PAF (i.e., higher frequency) is asso-
ciated with improved cognitive performance in working
and semantic memory tasks (Klimesch, 1999). PAF is
also correlated with individual processing capacity,
both in trait (i.e., inter-individual) and state (i.e., intra-
individual) contexts (Minami & Amano, 2017). PAF
follows a developmental trajectory, increasing through-
out childhood, stabilising in late-adolescence/adulthood
(�10 Hz), and decreasing in old age, effectively parallel-
ing age-related changes in brain volume and cognitive
performance (Bigler et al., 1995; Breslau et al., 1989).

Individuals with depression (Tement et al., 2016),
post-traumatic stress disorder (Wahbeh & Oken, 2013),
autism (Dickinson et al., 2018), and chronic pain
(Fauchon et al., 2022; Kim et al., 2019; Sarnthein
et al., 2006; de Vries et al., 2013) exhibit slower PAF than
the general population. Interventions that can modulate
PAF may be useful to help illuminate the role of oscilla-
tions for brain function in health and disease and poten-
tially underpin new therapeutic approaches for a variety
of conditions (Herrmann et al., 2013; Sejnowski &

Paulsen, 2006). A number of interventions are thought to
be capable of modulating brain oscillations, including
non-invasive brain stimulation (NIBS).

NIBS techniques, such as transcranial magnetic stim-
ulation (TMS) and transcranial electrical stimulation
(tES), are a collection of safe technologies for exploring
and modifying brain activity without requiring invasive
procedures (Herrmann et al., 2013; Ridding &
Rothwell, 2007). TMS applies a magnetic field via a coil
to induce electrical currents in the brain tissue below,
while tES delivers weak electrical currents to the scalp
(Herrmann et al., 2013; Ridding & Rothwell, 2007). Both
techniques interact with electrical fields produced by
neural populations in the brain, thus modulating synap-
tic activity and potentially leading to changes in brain
oscillations, such as PAF (Bergmann & Hartwigsen, 2021;
Braga et al., 2021; Herrmann et al., 2013; Mansouri
et al., 2018; Vogeti et al., 2022). The mechanisms by
which these changes occur are not completely estab-
lished, but two possibilities include entrainment and the
modulation of neural plasticity (Vosskuhl et al., 2018).

Entrainment theory suggests that internal brain
oscillations synchronise with external rhythmic inputs
(Lakatos et al., 2019; Thut, Schyns, & Gross, 2011). For
instance, repetitive TMS (rTMS) and some tES methods,
such as oscillatory transcranial direct current stimula-
tion (otDCS) and transcranial alternating current
stimulation (tACS), rhythmically alter synaptic firing or
thresholds, potentially synchronising internal oscillations
to ongoing external input (Braga et al., 2021; Mansouri
et al., 2018; Thut, Schyns, & Gross, 2011). However, as
entrainment effects are theoretically only expected to out-
last stimulation cessation by a few cycles (Thut, Schyns, &
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Gross, 2011), longer lasting effects may rely on neural
plasticity, such as spike-timing dependent plasticity
(STDP) (Polanía et al., 2018; Vosskuhl et al., 2018; Zaehle
et al., 2010). In STDP, the timing of neuronal firing influ-
ences the strength and direction of synaptic connections,
with action potentials arriving shortly before a post-
synaptic potential leading to long-term-potentiation
(LTP) and those arriving shortly after leading to long-
term-depression (LTD) (Markram et al., 1997; Zaehle
et al., 2010). The resulting changes in excitation and inhi-
bition balance and firing patterns may be visible by
changes in EEG oscillatory activity. The effect of NIBS
techniques that lack a rhythmic component, but still
influence patterns of neuronal firing, such as the constant
currents applied by tDCS or irregular currents by tran-
scranial random noise stimulation (tRNS), may also be
explained by STDP (Bindman et al., 1962; Purpura &
McMurtry, 1965).

PAF represents the dominant frequency of brain
oscillations, and oscillations reflect fluctuations in the
electrical activity of neural populations over time
(Biasiucci et al., 2019; Cohen, 2017a; Lopes da
Silva, 2013, 2023; Nunez & Srinivasan, 2006). Therefore,
notwithstanding the precise mechanisms involved, if
NIBS techniques can alter the electrical activity of neural
populations (Bergmann & Hartwigsen, 2021; Braga
et al., 2021; Herrmann et al., 2013, 2016; Mansouri
et al., 2018; Polanía et al., 2018; Vogeti et al., 2022), then
NIBS techniques are prime candidates for PAF modula-
tion. Literature provides evidence that NIBS techniques
can alter the magnitude of alpha oscillations and
increase the phase coherence of ongoing oscillations
(Bergmann & Hartwigsen, 2021; Herrmann et al., 2013;
Vogeti et al., 2022), but it remains unclear if these effects
directly correspond to changes in resting state PAF that
outlast the stimulation duration. As PAF is closely asso-
ciated with various cognitive functions and diseases, if
we find that NIBS interventions are also able to modu-
late the frequency of alpha oscillations (i.e., PAF), then
we will gain a new approach for influencing and investi-
gating brain function. However, the existing literature
lacks a systematic review of NIBS effects on PAF to
guide such investigations.

The aim of this systematic review was to comprehen-
sively synthesise the evidence for general and specific
effects of different NIBS interventions on PAF in healthy
participants. Specifically, we aimed to determine: 1) the
types of NIBS interventions used to modulate resting
state PAF in healthy adults; 2) the magnitude, direction,
and duration of any effects of NIBS on PAF; and 3) the
sample sizes, methodological approaches, and environ-
mental characteristics of studies that successfully
modulated PAF.

2 | MATERIALS AND METHODS

2.1 | Protocol and registration

This systematic review was reported according to the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Liberati et al., 2009;
Moher et al., 2009). The protocol of this review was regis-
tered at the International Prospective Register of System-
atic Reviews (PROSPERO; registration number:
CRD42020190512) and has been made available on the
Open Science Framework (OSF; https://osf.io/2yaxz/).
Note that the initial protocol sought to explore the effect
of a range of different interventions (e.g., NIBS, exercise,
drugs) on PAF. Because of the heterogenous mechanisms
of action and wide variety of interventions used to modu-
late PAF, this study only reports the effects of NIBS inter-
ventions. This protocol deviation was recorded on OSF
(https://osf.io/2yaxz/).

2.2 | Search strategy

Searches were conducted to find completed studies since
2000 in the following databases: EMBASE, PsychINFO,
PubMed, Scopus, and the Cochrane Library. Search terms
consisted of combinations of key terms referring to PAF,
EEG, and neuromodulation interventions, using boolean
operators and truncations to ensure sensitivity and speci-
ficity. The project team created exact search strategies
with guidance from an expert librarian and adapted them
for each database (Supplementary Material 1).

Trial registers and repositories of results, including the
U.S. National Library of Medicine (https://clinicaltrials.
gov/), the System for Information on Grey Literature in
Europe (https://opengrey.eu/), the New York Academy of
Medicine Grey Literature Report (http://www.greylit.org),
and the Open Science Framework Preprint archive search
(https://osf.io/preprints/discover) were searched to iden-
tify completed unpublished studies.

Database searches were carried out by the first author
(SKM). The initial search, including all neuromodulation
techniques, was conducted in February 2021, and a final
repeat search of only NIBS interventions was conducted
in April 2023 prior to publication of review outcomes.
References of relevant articles and reviews were also
searched manually for additional articles.

2.3 | Inclusion criteria

1. Studies written in English;
2. Studies published after or in the year 2000;
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3. Participants: healthy adults aged between 18 and
65 years, no restrictions on sex, gender, or race/eth-
nicity. Studies involving clinical populations that also
assessed a healthy control group were included. Only
information from the healthy control group was
extracted;

4. Intervention: any intervention using NIBS techniques,
including:
a. magnetic stimulation techniques (e.g., repetitive

transcranial magnetic stimulation [rTMS], theta
burst stimulation [TBS]),

b. electrical stimulation techniques (e.g., transcranial
alternating current stimulation [tACS], transcra-
nial direct current stimulation [tDCS], cranial elec-
trotherapy stimulation [CES], reduced impedance
non-invasive cortical electrostimulation [RINCE],
or transcranial random noise stimulation [tRNS]);

5. Comparison: studies with or without control groups
were included;

6. Outcome: change in resting state PAF (Hz), with PAF
measured using resting state EEG or MEG before and
after an intervention. Resting state may include a
relaxed supine, seated, or standing position with eyes
either opened or closed;

7. Study design: original experimental or quasi-
experimental research studies, using single group, par-
allel, or cross-over study designs with both random-
ised and nonrandomised allocation.

2.4 | Exclusion criteria

1. Studies investigating patient populations (i.e., defined
as registered to receive or receiving medical treat-
ment) without a healthy control group;

2. Studies investigating populations other than humans
(i.e., animal models, simulations, computer models);

3. Studies measuring EEG or MEG in a state other than
conscious awake states (e.g., sleep, coma, unrespon-
sive wakefulness syndrome);

4. Studies only measuring PAF at one time point or dur-
ing stimulation;

5. Reviews, commentaries, editorials, study protocols,
conference abstracts or proceedings, book chapters,
letters to the editor, or case studies.

2.5 | Study selection

Search results were exported to Mendeley version 1.19
(London, UK), where duplicate articles were identified
and removed. Two independent reviewers assessed titles

and abstracts to identify potentially relevant studies. Any
cases of doubt were automatically selected for full-text
eligibility evaluation. The full-texts of these studies were
retrieved and an automatic full-text scan phase was used
to identify articles that reported measurement of PAF in
the full text. A conceptual flow chart, key words, and the
Python code used for the FT-scan are freely available
(https://github.com/sammymillard/ft-scan). Full-texts
were assessed by two independent reviewers against eligi-
bility criteria. A third reviewer was consulted to resolve
any disagreements. Excluded studies and the reason for
exclusion were recorded.

2.6 | Data extraction

A customised data extraction form was used by two inde-
pendent reviewers to extract data from each relevant
study. Any inconsistencies were resolved by a third
reviewer. The following data were extracted:

• Study characteristics: study design, randomisation pro-
cedures, and number of conditions/groups in each
experiment.

• Participant characteristics: sample size, sex, age, and
any other demographic information provided.

• Interventions: exact NIBS intervention implemented,
route of delivery, dose, duration, frequency, timing of
intervention, as well as comparison conditions and co-
interventions used.

• EEG recording: electrode numbers and location, eyes
opened/closed, sampling rate, filter properties, room
characteristics, participant position, duration of record-
ing, timing of recording in respect to intervention.

• PAF calculation: length of epochs, frequency conver-
sion method, bins, and range used, as well as PAF cal-
culation method, and regions of interest.

• Outcomes: pre- and post-intervention PAF means and
standard deviations (SDs), mean differences (MDs)
and SDs, standardised mean difference (i.e., effect
sizes), their variance and standard error (SE) of vari-
ance, as well as F-values, t-values, and p-values when
means and SDs were not available.

2.7 | Missing data

Corresponding authors were contacted up to three times
via email to request missing data. In cases where no reply
was received within six weeks of the third contact
attempt, data were deemed inaccessible. Data were
extracted from figures where possible.
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2.8 | Risk of bias and EEG
methodological assessment

Risk of bias was assessed using version 6 of the Cochrane
Collaboration’s tool for assessing risk of bias (Higgins
et al., 2011; Sterne et al., 2019). Elements of methodology
and reporting were assessed using the best practice rec-
ommendations for MEG and EEG (i.e., MEEG) data pro-
duced by the Committee on Best Practice in Data
Analysis and Sharing (COBIDAS) (Pernet et al., 2018).
The COBIDAS MEEG guidelines were adapted to allow
MEEG analysis and reporting to be summarised for the
PAF outcome (Supplementary Material 2). Two indepen-
dent reviewers conducted risk of bias and MEEG meth-
odology assessments. Inconsistencies were resolved by a
third reviewer where required.

2.9 | Data synthesis

Data were synthesised according to the type of NIBS
intervention (i.e., separate groups for tACS, rTMS, tDCS).
Where interventions had multiple components or condi-
tions with co-interventions (e.g., tDCS with exercise),
only the data from the NIBS intervention component
were used (McKenzie et al., 2021). When several post-
intervention time points were collected (e.g., 5, 10, 15,
and 20 min post-intervention), the most commonly used
time point across studies of the same NIBS intervention
was used to avoid issues of multiplicity (McKenzie
et al., 2021). When two or more time points were used
equally across studies, the earliest time point was used.

2.9.1 | Meta-analyses

The effect of NIBS interventions on PAF was assessed
using mean differences and 95% confidence intervals
(CIs) (Borenstein et al., 2009). To synthesise data,
random-effects, pair-wise meta-analyses were conducted
in RevMan (version 5.4.). Weight was dependent on sam-
ple size and amount of variance in outcome within a
study. The results of the meta-analyses are presented as
forest plots that indicate either increased or decreased
PAF following intervention. The distribution of effect
sizes were visually examined for each analysis. As studies
with small sample sizes were included, and Cohen’s d
tends to over-estimate standardised mean difference in
such cases (Borenstein et al., 2009), d was converted to
Hedges’ g (Hedges, 1981). The heterogeneity was consid-
ered significant when p<0:1 in a χ2 test. I2 was calcu-
lated and values greater than 50% denote important
variability across studies that is not due to sampling error
(Borenstein et al., 2009, 2017).

2.9.2 | Subgroup analyses

Based on entrainment principles (Thut, Schyns, &
Gross, 2011; Vogeti et al., 2022), using stimulation fre-
quencies above, below, or at an individual PAF, should
increase, decrease, or have no effect on PAF, respectively.
Therefore, tACS conditions were grouped into stimula-
tion frequencies above baseline PAF, below baseline
PAF, and those without individualised directions for a
subgroup analysis. Due to insufficient numbers of
included studies, data were not separated by age, sex, or
EEG parameters as planned in the protocol (https://osf.
io/2yaxz/).

2.9.3 | Sensitivity analysis

Sensitivity analyses were not performed by removing
studies with high risk of bias (Deeks et al., 2021) as
planned in the protocol (https://osf.io/2yaxz/), because
all included studies had low risk of bias.

2.9.4 | Alternative data synthesis

When meta-analysis was not possible for a particular type
of NIBS, an alternative synthesis was conducted based on
the Synthesis Without Meta-analysis (SWiM) reporting
guidelines (Campbell et al., 2020). For each intervention
type, a description of the synthesised findings, the level
of certainty in the findings, and possible limitations to
the synthesis are described (Campbell et al., 2020).

Where possible, pre- and post-intervention means,
SDs mean differences, and standardised mean differ-
ences (i.e., estimate of effect), as well as variance and
direction of effects on PAF, are reported. Within tables,
studies are ordered based on possible differences related
to PICO elements (i.e., participant, intervention, con-
trol, outcome) to informally highlight possible sources
of heterogeneity.

2.9.5 | Certainty of evidence

Certainty of evidence, as defined in previous studies
(Buscemi et al., 2017; Karjalainen et al., 2001; McLean
et al., 2010; Scholten-Peeters et al., 2003), forms the basis
of prioritising results for summary and conclusion:

• Strong evidence: consistent findings from two or more
cohorts with low risk of bias.

• Moderate evidence: consistent findings from at least
one cohort with low risk of bias and one or more
cohorts with high risk of bias.
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• Limited evidence: findings from only one study with
low risk of bias or consistent findings in one or more
studies with high risk of bias.

• Conflicting evidence: inconsistent findings irrespective
of risk of bias.

• No evidence: no studies found.

3 | RESULTS

3.1 | Search results

The initial search for all types of interventions used to
modulate PAF (e.g., exercise, drugs, NIBS) in EMBASE,
PsychINFO, PubMed, Scopus, and the Cochrane library
in February 2021 provided a total of 6609 references.
After adjusting for duplicates, 4827 abstracts were
screened, after which 530 full-texts were screened. A

total of 86 studies met the inclusion criteria for all vari-
eties of PAF modulators, nine of which were NIBS
interventions. The second search with only NIBS key
terms (deviations tracked: https://osf.io/2yaxz/) identi-
fied 284 additional references of which 213 abstracts
were screened after removing duplicates. Fifty full-texts
were screened, resulting in two additional NIBS studies
that met the inclusion criteria published between February
2021 and April 2023. Therefore, a total of 11 NIBS studies
were identified for inclusion in the review (Anderson
et al., 2007; Capotosto et al., 2014; Haberbosch et al., 2019;
Kleinert et al., 2017; Okamura et al., 2001; Pahor &
Jaušovec, 2016; Ronconi et al., 2020; Sato et al., 2021;
Stecher et al., 2021; Stecher & Herrmann, 2018; Steinmann
et al., 2022). See Figure 1 for study selection summary.

In total, the included studies involved 212 healthy
adult participants. Participant age was not reported by
one study (Anderson et al., 2007). Three types of NIBS

F I GURE 1 Preferred reporting items for systematic reviews and meta-analysis (PRISMA) flow diagram of the screening and inclusion

of studies. NIBS = non-invasive brain stimulation; PAF = peak alpha frequency.
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interventions were identified: tACS (n = 7 studies)
(Haberbosch et al., 2019; Kleinert et al., 2017; Pahor &
Jaušovec, 2016; Ronconi et al., 2020; Stecher et al., 2021;
Stecher & Herrmann, 2018; Steinmann et al., 2022),
rTMS (n = 3 studies) (Anderson et al., 2007; Capotosto
et al., 2014; Okamura et al., 2001), and tDCS (n = 1
study) (Sato et al., 2021). The study designs included
repeated measures (n = 1), parallel groups (n = 5), and
crossover designs (n = 5). Six studies were randomised,
controlled, and three studies were non-randomised, con-
trolled. See Table 1 for further details.

3.2 | EEG methodology and quality

Table 2 shows a summary of EEG methodology. The
average score for the EEG methodological assessment
was 0.50 out of a maximum score of 1.0 (range: 0.35–
0.61). The reliability and precision of PAF measurements
can be altered by a variety of factors, such as the record-
ing duration, PAF calculation method, and whether data
are recorded with eyes opened or closed (Chiang
et al., 2011; Chowdhury et al., 2023; Corcoran
et al., 2018), these points are discussed below. However,
in a comparison of pre-processing methods, where we
compared a maximum cleaning pipeline to a no clean
pipeline, we showed that earlier pre-processing methods
(e.g., artefact rejection, re-referencing, etc.,) do not influ-
ence PAF (Chowdhury et al., 2023). Therefore, further
comments on the earlier preprocessing steps are not
made, besides recognising that there is inconsistent
reporting and heterogeneity in the execution of earlier
pre-processing steps, which is reflected by the methodo-
logical assessment conducted on included studies.

All studies reported using seated resting state EEG
data, recorded immediately before and after NIBS inter-
ventions, and all reported whether resting state EEG was
recorded with eyes open or eyes closed. Specifically, three
studies recorded with eyes open (Capotosto et al., 2014;
Stecher et al., 2021; Stecher & Herrmann, 2018), five with
eyes closed (Anderson et al., 2007; Okamura et al., 2001;
Pahor & Jaušovec, 2016; Ronconi et al., 2020; Sato
et al., 2021), and three recorded both conditions
(Haberbosch et al., 2019; Kleinert et al., 2017; Steinmann
et al., 2022). One study did not have pure resting states as
participants watched a video during resting states
recorded inside an MRI scanner (Steinmann et al., 2022).

Seven studies recorded the resting state EEG for two or
more minutes (Kleinert et al., 2017; Pahor &
Jaušovec, 2016; Ronconi et al., 2020; Sato et al., 2021;
Stecher et al., 2021; Stecher & Herrmann, 2018; Steinmann
et al., 2022), while the remainder recorded for less than
two minutes (range: 2 s–1.5 min) (Anderson et al., 2007;

Capotosto et al., 2014; Haberbosch et al., 2019; Okamura
et al., 2001). No study reported the number of electrodes
excluded or interpolated, how many artefact-free epochs
were included, or the length of time included per condi-
tion for the PAF calculation, except for Haberbosch et al.
(2019) who reported 25 s of artefact-free data.

Most studies reported using fast Fourier transforms
(FFT) (Anderson et al., 2007; Haberbosch et al., 2019;
Kleinert et al., 2017; Okamura et al., 2001; Ronconi
et al., 2020; Stecher et al., 2021), while some were unclear
on the spectral analysis method used (Capotosto
et al., 2014; Sato et al., 2021; Stecher & Herrmann, 2018)
whilst reporting use of hanning windows or referring to
methods conducted by Klimesch et al. (1998). One study
accounted for the 1/f characteristic of the power spec-
trum by multiplying the power at each frequency with
the respective frequency (Stecher et al., 2021). Regarding,
the range used for alpha, five studies used an 8–12 Hz
alpha range (Anderson et al., 2007; Haberbosch
et al., 2019; Kleinert et al., 2017; Ronconi et al., 2020;
Steinmann et al., 2022), three used 7–14 Hz (Capotosto
et al., 2014; Pahor & Jaušovec, 2016; Sato et al., 2021),
one used 7.2–12.8 Hz (Stecher et al., 2021), and one used
7.5–12 Hz (Stecher & Herrmann, 2018). Most studies
used the peak picking method of determining PAF,
where PAF is defined as the point at which power is
maximal within a specified alpha range, identified visu-
ally or with a max function (Anderson et al., 2007;
Capotosto et al., 2014; Haberbosch et al., 2019; Kleinert
et al., 2017; Ronconi et al., 2020; Stecher et al., 2021;
Steinmann et al., 2022). Two studies did not use the
peak picking method; Sato et al. (2021) used the centre
of gravity (CoG) method and Pahor and Jaušovec (2016)
used the channel reactivity based (CRB) method. The
CoG method describes PAF as the weighted sum of spec-
tral elements with a specified alpha range, computed by
dividing the sum of the products of frequency and power
by the sum of power across the frequency band
(Brötzner et al., 2014; Jann et al., 2012, 2010;
Klimesch, 1999; Klimesch et al., 1993). The CRB method
assesses the reactivity of alpha oscillations across multi-
ple channels, relying on this reactivity rather than the
presence of spectral peaks (Goljahani et al., 2014, 2012).
Various electrodes were used for determining PAF
(Table 2), with three studies not reporting which elec-
trodes were used (Anderson et al., 2007; Capotosto
et al., 2014; Pahor & Jaušovec, 2016).

3.3 | Risk of bias

One study had ‘some concerns’ regarding overall risk of
bias (Steinmann et al., 2022), while all other studies had
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a ‘low’ risk of bias (Figure 2). Two studies had ‘some
concerns’ in the “deviations from the intended interven-
tions” domain, because of a lack of reported information
(Haberbosch et al., 2019; Sato et al., 2021). Additionally,

two studies had ‘some concerns’ in the “selection of
reported results” domain, because they conducted multi-
ple analyses or outcomes without a pre-registered analy-
sis plan (Stecher et al., 2021; Steinmann et al., 2022).

TAB L E 2 Summary of resting state electroencephalography (EEG) methods.

Author
and year

Alpha
range
(Hz)

Regions/
electrodes

Recording
interval(s) pre-
intervention
(duration)

Recording
interval(s)
post-
intervention
(duration)

Eyes open/
closed

Recorded
duration
≥ or
2 min

Epoch
length (s)

Sampling
rate (Hz)

Pahor and
Jaušovec
(2016)

7–14 NR Immediately
before (3 min)

Immediately
after (3 min)

Closed ≥ 2 min 11 1000

Kleinert
et al. (2017)

8–12 Fz, F8, Pz, P8,
Oz

7 min before
(2 min open;
2 min closed)

Immediately
after (2 min
open; 2 min
closed)

Open and
closed

≥ 2 min NR 1000

Stecher and
Herrmann
(2018)

7.5–12 Global (23
electrodes)

Immediately
before (3 min)

Immediately
after (10 min)

Open ≥ 2 min 1 10,000

Haberbosch
et al. (2019)

8–12 Global (32
electrodes)

2.5 s before (30 s
open; 30 s
closed)

2.5 s after (25 s) Open and
closed

2 min 25 2000

Ronconi
et al. (2020)

8–12 Global (8
electrodes)

Immediately
before (3 min)

Immediately
after (3 min)

Closed ≥ 2 min 1 500

Stecher
et al. (2021)

7.2–
12.8

Pz Immediately
before (10 min)

Immediately
after (10 min)

Open ≥ 2 min 1 250

Steinmann
et al. (2022)

8–12 Occipital (O1,
Oz, O2, POz)

Before outside
scanner (3 min);
immediately
before inside
scanner (7 min)

Immediately
after inside
scanner (7 min)

Closed
outside
scanner;
open inside
scanner

≥ 2 min 10 1000

Okamura
et al. (2001)

8–12 F3, F4, C3, C4,
P3, P4, T3, T4,
T5, T6, Fz, Cz,
Pz, Oz

Immediately
before (5 min)

Immediately
after (5 min
[intervals: 0–
1 min; 1–2 min;
2–3 min; 3–
4 min])

Closed 2 min Continuous
(4-second
window)

500

Anderson
et al. (2007)

8–12 NR Immediately
before (2 s)

Immediately
after (2 s)

Closed 2 min 2 256

Capotosto
et al. (2014)

7–14 NR Immediately
before (1.5 min)

Immediately
after (2 min
[intervals: 0–
1 min; 1–2 min])

Open 2 min 2 256

Sato et al.
(2021)

7–14 Frontal (Fp1,
Fp2, F3, Fz, and
F4), central
(FC1, FC2, C3,
Cz, and C4),
parietal (CP1,
CP2, P3, P4, and
Pz), and occipital
(O1, O2, and Oz)
ROIs

Immediately
before (3 min)

Immediately
after (10 min)

Closed ≥ 2 min NR 2048

Abbreviation: NR, not reported.
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3.4 | Effects of tACS on PAF

The characteristics of the seven tACS studies are dis-
played in Table 1. Two authors could not provide pre-
and post-tACS PAF means and SDs, so these studies were
excluded from the meta-analysis (Kleinert et al., 2017;
Steinmann et al., 2022). Pre- and post-tACS PAF means
and SDs were collected from eight conditions across the
remaining five studies.

3.4.1 | Meta-analysis of tACS effects on PAF

The eight active tACS conditions included in the meta-
analysis varied in stimulation parameters, including
stimulation location (i.e., central (Pahor & Jaušovec, 2016;
Stecher & Herrmann, 2018), parietal (Ronconi
et al., 2020), central-parietal (Stecher et al., 2021), and
around the eyes (Haberbosch et al., 2019)), duration (i.e., 6
(Haberbosch et al., 2019), 15 (Pahor & Jaušovec, 2016),
18 (Stecher & Herrmann, 2018), and 40 min (Ronconi
et al., 2020; Stecher et al., 2021)), and frequency. Stimula-
tion frequencies used included 10 Hz fixed frequency
(Haberbosch et al., 2019), above each individual’s PAF
(i.e., +1 Hz (Pahor & Jaušovec, 2016) and +2 Hz (Ronconi
et al., 2020)), below each individual’s PAF (i.e., �2 Hz
(Ronconi et al., 2020)), fixed at individual PAF (Stecher
et al., 2021; Stecher & Herrmann, 2018), or a closed-loop
PAF stimulation that calculated a new PAF and adjusted
stimulation frequency every 8 s (Stecher et al., 2021)
(Table 1). Meta-analysis showed no change in PAF after
tACS intervention (5 studies, 8 conditions, 141 participants,
MD = �0.12, 95% CI = �0.32 to 0.08, Z = 1.18, p = 0.24,
X2 7ð Þ = 3.88, p = 0.79 I2 = 0%; Figure 3).

The lack of general effects of tACS on PAF, could be
explained by the variety of stimulation parameters used.
Because of the potential for different stimulation frequen-
cies to alter the effect of tACS on PAF, based on entrain-
ment theory (Lakatos et al., 2019; Thut, Schyns, &
Gross, 2011; Vogeti et al., 2022), a subgroup analysis was
conducted for this stimulation parameter.

3.4.2 | Subgroup meta-analysis based on
tACS stimulation frequency

Two tACS conditions applied stimulation above individual
PAF (i.e., +1 Hz and +2 Hz) (Pahor & Jaušovec, 2016;
Ronconi et al., 2020). Pair-wise comparisons showed no
increases in PAF (41 participants, MD = 0.02, 95%
CI = �0.37 to 0.40, Z = 0.09, p = 0.93, X2 1ð Þ = 1.12, p =

0.29, I2 = 11%; Figure 3). One condition applied tACS
below individual PAF (i.e., �2 Hz) (Ronconi et al., 2020),
showing no decreases in PAF (21 participants,
MD=�0.23, 95% CI=�0.68 to 0.22, Z = 0.99, p = 0.32).
Five conditions did not individualise tACS (i.e., stimu-
lated at fixed or closed-loop individual PAF (Stecher
et al., 2021; Stecher & Herrmann, 2018), or at a fixed
10 Hz (Haberbosch et al., 2019)). No differences in PAF
were found after tACS under these conditions (79 partici-
pants, MD=�0.16, 95% CI=�0.45 to 0.13, Z = 1.10,
p = 0.27, X2 4ð Þ = 1.96, p = 0.74, I2 = 0%).

3.5 | Effects of rTMS on PAF

Characteristics of three rTMS studies are displayed in
Table 1, (Anderson et al., 2007; Capotosto et al., 2014;

F I GURE 2 Risk of bias results for included studies, using version 6 of the Cochranes Collaboration’s tool for assessing risk of bias

(Higgins et al., 2011; Sterne et al., 2019).
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Okamura et al., 2001) and are synthesised qualitatively,
because of lack of data. Capotosto et al. (2014) applied
singular one-minute blocks of 1 Hz rTMS at 100% of
motor threshold (MT) to six different brain regions sepa-
rately (i.e., the right and left for intraparietal sulcus, fron-
tal eye fields, tACS and angular gyrus) in 15 participants.
They reported no evidence for PAF modulation at any
location (Capotosto et al., 2014). Anderson et al. (2007)
applied five blocks of 10 Hz rTMS, lasting 5 s each block,
to the dorsal lateral pre-frontal cortex (DLPFC) in 10 par-
ticipants, finding evidence for an increase in PAF. Oka-
mura et al. (2001) applied two blocks of 10 Hz rTMS,
lasting 3 s each block, to the left pre-frontal area in
20 participants, finding evidence for increases in PAF
lasting for 1–2 min after rTMS. These PAF increases were
found in frontal and central sensors (i.e., F3, F4, C3, T3,
T4, Fz, and Cz). In summary, there is moderate evidence
from two studies that stimulation at 10 Hz to frontal
regions could increase PAF (Anderson et al., 2007;
Okamura et al., 2001).

3.6 | Effects of tDCS on PAF

Only one study investigated the effect of tDCS on PAF
with 10 participants (Sato et al., 2021) (Table 1). Sato
et al. (2021) applied 2 mA anodal tDCS for a singular
20-minute block to the left M1, finding no effect on PAF
in any of the four regions of interest (i.e., frontal, central,
parietal, occipital).

4 | DISCUSSION

This is the first systematic review to synthesise the evi-
dence for the effect of NIBS interventions on PAF speed.
Eleven studies using tACS (seven studies), rTMS (three
studies), and tDCS (one study) were included. There was
moderate evidence for increased PAF speed from two
studies applying rTMS at 10 Hz to frontal regions and no
evidence that tACS or tDCS modulated PAF speed. Over-
all, the evidence is limited, and heterogeneity of stimula-
tion parameters hampers conclusions.

4.1 | tACS does not alter PAF

tACS delivers sinusoidal currents to the brain at a spe-
cific frequency and is thought to modify synaptic activity
by rhythmically altering neuron membrane potentials
and the likelihood of neuronal firing, offering the poten-
tial to modulate brain oscillations (Bergmann &
Hartwigsen, 2021; Fröhlich & McCormick, 2010;
Frohlich & Riddle, 2021; Herrmann et al., 2013;Thut,
Schyns, & Gross, 2011; Vogeti et al., 2022). However,
there was no evidence of an effect of tACS on PAF in this
review (Haberbosch et al., 2019; Kleinert et al., 2017;
Pahor & Jaušovec, 2016; Ronconi et al., 2020; Stecher
et al., 2021; Stecher & Herrmann, 2018; Steinmann
et al., 2022). Definitive conclusions are limited because of
the scarcity of studies, small sample sizes, and substantial
heterogeneity in stimulation parameters, including

F I GURE 3 Forest plot showing studies that measured peak/individual alpha frequency (PAF/IAF) pre- and post-transcranial

alternating current stimulation (tACS) interventions.
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frequency (i.e., at individual fixed or closed-loop PAF,
PAF + 2 Hz, PAF + 1 Hz, PAF –2 Hz, fixed 10 Hz, fixed
5 Hz), duration (range: 6–40 min), and location
(i.e., frontal, parietal, occipital). Given that parameter
configurations are likely to directly influence modulation
of oscillations (Polanía et al., 2018; Thut, Veniero,
et al., 2011; Vogeti et al., 2022), future research should
systematically investigate the effects of these parameters
on PAF.

Entrainment describes the frequency and phase align-
ment between oscillatory systems (Pikovsky et al., 2001).
In the context of brain oscillations, entrainment refers to
the process by which the frequency and phase of neural
oscillations synchronise to an external rhythmic stimulus
(Frohlich & Riddle, 2021; Lakatos et al., 2019; Pikovsky
et al., 2001; Thut, Schyns, & Gross, 2011). Based on the
theory of entrainment, stimulation frequencies faster
than an individual’s PAF should increase PAF speed,
while slower frequencies should decrease it (Lakatos
et al., 2019; Thut, Veniero, et al., 2011). Subgroup analy-
sis found no effect on PAF, regardless of the stimulation
frequency used. Notably however, the largest subgroup
stimulated either at a non-individualised frequency
(i.e., 10 Hz) or at individual PAF (e.g., fixed or closed-
loop). As entrainment theory would predict no change in
PAF under these conditions, the insignificant finding is
perhaps unsurprising. One condition in the current
review stimulated below individual PAF, to the parietal
lobe (Ronconi et al., 2020), while two conditions stimu-
lated above PAF, to either parietal (Ronconi et al., 2020)
or frontal lobes (Pahor & Jaušovec, 2016). However, stim-
ulating above or below PAF also showed no change in
PAF. A recent study corroborated our lack of findings,
reporting no effect of left posterior parietal tACS on PAF
(N = 21) across various stimulation frequencies
(i.e., PAF, PAF + 2 Hz, PAF –2 Hz, and sham stimula-
tion) in a randomised cross-over design (Kemmerer
et al., 2022). This study was excluded from the current
review because of inclusion of participants older than
65 years (see Materials and methods).

It is plausible that the lack of overall effect is due to
stimulation location, as individualised stimulation fre-
quencies are yet to be tested in central or occipital loca-
tions. Alternatively, lack of effects may stem from the
application of stimulation frequencies that are too far
from an individual’s baseline PAF, such as PAF �2 Hz
(Kemmerer et al., 2022; Ronconi et al., 2020). According
to the physical principles of synchronisation (Pikovsky
et al., 2001), it is easier to entrain internal rhythms with
external rhythms that closely match in frequency (Thut,
Schyns, & Gross, 2011; Vogeti et al., 2022); with existing
evidence that higher stimulation intensities are required
to achieve entrainment when the frequency is not closely

matched (Ali et al., 2013; Frohlich & Riddle, 2021; Huang
et al., 2021). However, a comprehensive investigation
into the effects of stimulation frequencies above and
below individual PAF on PAF modulation is lacking.
Future tACS research should use larger sample sizes and
adopt smaller increments of stimulation frequencies
around individual baseline PAF, such as PAF �0:2 Hz or
PAF �0:5 Hz, to provide more detailed understanding of
the effects of tACS stimulation frequency on PAF.

4.2 | rTMS at 10 Hz may increase PAF

Two studies used 10 Hz rTMS over pre-frontal regions,
finding transient increases in PAF (�1.5 Hz) in frontal,
central, and temporal EEG electrodes lasting for 2 min
(Anderson et al., 2007; Okamura et al., 2001), suggesting
localised effects near the stimulation site. Conversely,
one study that examined 5 Hz rTMS over multiple loca-
tions found no evidence for PAF modulation (Capotosto
et al., 2014). However, caution is needed when interpret-
ing these results because of small sample sizes and the
limited number of studies. As well as replication studies,
future research could use longer stimulation durations or
multiple sessions in larger samples to assess whether sus-
tained change in PAF can be induced by rTMS. More-
over, as current evidence suggests that rTMS-induced
PAF changes might be short-lasting, having only been
observed for a maximum of 2 min (Anderson et al., 2007;
Okamura et al., 2001), it will be important to measure
PAF during stimulation in future research to capture
transient PAF modulation. Notably, changes in PAF dur-
ing stimulation have been observed for both tACS
(Minami & Amano, 2017) and rTMS (Di Gregorio
et al., 2022). It remains inherently challenging to mea-
sure the effects of NIBS on oscillations during stimulation
because of electrical artefacts (Wagner et al., 2007), but
doing so could be pivotal for understanding the extent to
which rTMS influences PAF.

Included rTMS studies employed fixed 5 or 10 Hz fre-
quencies; however, literature on PAF modulation during
stimulation suggests more robust effects may be induced
by applying individualised rTMS frequencies (i.e., PAF
�1 Hz), as indicated by Di Gregorio et al. (2022). Further-
more, studies on rTMS in depression suggest that the
proximity of an individual’s PAF to the external driving
rhythm (i.e., rTMS frequency) has a quadratic relation-
ship with improvements in depression symptoms (Corlier
et al., 2019; Roelofs et al., 2021), such that patients with
baseline PAF closer to the stimulation frequency of 10 Hz
had greater improvements in depressive symptoms than
those with baseline PAF further from 10 Hz. This indi-
cates that the relationship between baseline PAF and
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stimulation frequency may impact functional outcomes
related to PAF speed, alongside the magnitude and direc-
tion of PAF change (Corlier et al., 2019; Roelofs
et al., 2021). However, these studies did not assess
whether PAF was modulated by the stimulation. Future
research should investigate effects of individualised stim-
ulation frequencies on PAF and the relationship between
baseline PAF and stimulation frequency of rTMS.

4.3 | tDCS does not alter PAF

Research investigating the effect of tDCS interventions
on PAF is scarce. One study (Sato et al., 2021) examined
the effect of 2 mA tDCS over the motor cortex (C3) on
PAF in 10 healthy adult participants, reporting no effect
on PAF. However, the study’s small sample size limits
definitive conclusions. Further research should explore
whether tDCS-induced changes in inhibition-excitation
balance correlate with PAF alterations and determine
optimal stimulation locations, montages, and experimen-
tal set-ups. For example, the authors noted that future
investigations should reduce the time between stimula-
tion with tDCS and measurement with EEG, as PAF
changes may have ended before the researchers were able
to conduct the assessment because of the experimental
set-up requiring re-application of the EEG cap (Sato
et al., 2021). Additionally, a study in children with autism
observed PAF increases around the anodal tDCS site
(F3) (Amatachaya et al., 2015), suggesting population-
specific and/or location-dependent effects.

Furthermore, though combined interventions were
excluded from this systematic review (see Materials and
Methods), Sato et al. (2021) found that both active tDCS
combined with exercise and sham tDCS combined with
exercise, produced significant increases in PAF (�0.7 Hz)
in occipital electrodes. However, as the authors did not
include a condition of exercise alone, it is difficult to dis-
entangle the effects of tDCS on PAF compared with the
effects of exercise. A previous review on the effects of
exercise on EEG has suggested that PAF speed increases
after exercise (Gramkow et al., 2020), in this case follow-
ing 12 sessions of 30 min on a cycle ergometer over
4 weeks (Gutmann et al., 2018, 2015). Thus, more studies
are needed to elucidate the potential effects of tDCS,
alone or in combination, on PAF modulation.

4.4 | Recommendations and future
directions

Based on this review, future research should: 1) explore
smaller increments of stimulation frequencies for tACS

around individuals’ PAF, such as PAF �0:2 Hz, or PAF
�0:5 Hz; 2) explore the relationship between baseline
PAF and stimulation frequency for tACS and rTMS; 3)
attempt to measure PAF during stimulation; 4) use lon-
ger durations or multiple sessions of 10 Hz rTMS; and 5)
explore individualised stimulation frequencies for rTMS.

In addition, future research should consider the theo-
retical assumptions underlying NIBS mechanisms on
brain oscillations, specifically, the theory of STDP along-
side entrainment (Vogeti et al., 2022). While entrainment
refers to synchronisation of endogenous oscillations to an
external driving frequency, STDP suggests that stimula-
tion leads to synaptic changes based on the timing of neu-
ronal firing in the targeted region (see Vogeti et al. (2022)
for a full review). The choice of stimulation parameters,
such as the stimulation intensity or timing and duration
of stimulation trains, may have varying effects on PAF
depending on which theory or combination of theories
are employed (Bergmann & Hartwigsen, 2021; Vogeti
et al., 2022). In addition, future research could also con-
sider the brain state at the time of stimulation, as the tim-
ing of stimulation relative to oscillatory phase has been
shown to influence the effects of NIBS on behavioural
outcomes related to oscillations (Mahmoud et al., 2024;
Wischnewski et al., 2023). While the mechanism through
which NIBS may impact PAF remains uncertain, future
research should consider these theories in the selection of
stimulation parameters and timing of NIBS delivery.

Lastly, future studies should consider the influence of
EEG recording, pre-processing, and PAF calculation
methods. In the current review, included studies
employed varying locations, durations, and resting state
conditions (i.e., eyes closed or eyes open) for EEG mea-
surements. These discrepancies in EEG methodology
have the potential to influence PAF values and study out-
comes (Chowdhury et al., 2023; Corcoran et al., 2018;
Furman et al., 2021; Gil Avila et al., 2023; McLain
et al., 2022). For example, recording resting state EEG
with eyes closed emphasises the contribution of occipital
alpha oscillations, as opposed to when eyes are open
(Berger, 1929). In addition, the peak picking method of
PAF estimation that was used by most included studies,
except two (Pahor & Jaušovec, 2016; Sato et al., 2021),
overlooks the possibility of multiple alpha peaks in an
individual’s frequency spectra (Chiang et al., 2008, 2011).
This oversight also disregards the potential for changes in
PAF speed through relative increases in the power of fas-
ter alpha oscillations compared with slower alpha oscilla-
tions (Furman et al., 2021). Future studies should
carefully consider the conceptualisation, measurement,
and quantification of PAF when evaluating the effect of
NIBS interventions on PAF. Moreover, it is imperative
for future work to adhere to published reporting

14 MILLARD ET AL.



guidelines (Pernet et al., 2018, 2020), consider data shar-
ing (Pernet et al., 2020; Ploner et al., 2017), and adopt
standardised (Gil Avila et al., 2023) or no-clean
(Chowdhury et al., 2023) pre-processing pipelines to
enhance research quality, transparency (Cohen, 2017b),
and facilitate comparison of PAF values across studies
(McLain et al., 2022).

4.5 | Study limitations and constraints

There are several limitations in this review. First, the
included studies had small sample sizes and likely had
low statistical power. Second, the generalisability of the
results to patient populations cannot be inferred, as stud-
ies were restricted to healthy populations. Third, the
review only considered articles published since 2000,
potentially missing relevant work published prior to this
period. Fourth, effects of NIBS on PAF during stimula-
tion were not considered in this review. Lastly, the review
did not explore the influence of alpha power, despite the
extensive literature on NIBS effects on alpha power
(Vogeti et al., 2022). Investigating the interactions
between power and alpha peaks after NIBS could provide
valuable insights into PAF modulation.

5 | CONCLUSION

This systematic review provides preliminary evidence for
transient increases in PAF speed after one session of
10 Hz rTMS. Further investigations are warranted to
assess the sustained modulation of PAF by 10 Hz rTMS,
using multiple sessions or extended stimulation dura-
tions. Although tACS did not influence PAF in this anal-
ysis, the mechanism of action makes it theoretically
likely to influence PAF speed and further studies are war-
ranted. Exploring variations in stimulation parameters
(e.g., frequency, intensity, or duration) within tACS inter-
ventions could uncover its capacity to affect PAF. Future
studies should delve into optimal protocols and parame-
ter settings for rTMS and tACS, while accounting for
individual differences. This research has the potential to
not only advance our understanding of PAF modulation
through NIBS but also to refine existing therapeutic NIBS
interventions for conditions associated with slower PAF,
such as depression and chronic pain.
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