606 research outputs found

    High resolution imaging of the Venus night side using a Rockwell 128x128 HgCdTe array

    Get PDF
    The University of Hawaii operates an infrared camera with a 128x128 HgCdTe detector array on loan from JPL's High Resolution Imaging Spectrometer (HIRIS) project. The characteristics of this camera system are discussed. The infrared camera was used to obtain images of the night side of Venus prior to and after inferior conjunction in 1988. The images confirm Allen and Crawford's (1984) discovery of bright features on the dark hemisphere of Venus visible in the H and K bands. Our images of these features are the best obtained to date. Researchers derive a pseudo rotation period of 6.5 days for these features and 1.74 microns brightness temperatures between 425 K and 480 K. The features are produced by nonuniform absorption in the middle cloud layer (47 to 57 Km altitude) of thermal radiation from the lower Venus atmosphere (20 to 30 Km altitude). A more detailed analysis of the data is in progress

    Applications of the quasi-steady-state photoconductance technique

    No full text
    The main applications of photoconductance measurements of silicon wafers are the determination of implicit device voltages, bulk minority carrier lifetimes, emitter recombination currents and surface recombination velocities. These applications are illustrated with selected experiments. Multicrystalline and single crystal silicon wafers are used with different surface conditions. The practical situations considered here range from industrial process control to advanced research. Interpreting photoconductance in terms of implicit device voltage is particularly useful: the swept illumination conditions used in a quasi-steady-state photoconductance measurement permit the determination of complete I-V characteristic curves, ideality factors and saturation currents. The more classical interpretation in terms of an effective lifetime teff allows to discriminate different recombination mechanisms. Shockley-Read-Hall bulk recombination with a large asymmetry between the fundamental electron and hole lifetimes is found to explain the strong variation of teff at low injection level observed in some samples. Measurements in the high injection range permit the determination of the emitter saturation current density. This saturation current can impose quite restrictive limits on the measurable minority carrier lifetimes at low injection, particularly for low resistivity wafers. The surface recombination velocity of the Si/SiO2 interface can also be a source of variability of teff

    Interplay of bulk and surface properties for steady-state measurements of minority carrier lifetimes

    Full text link
    The measurement of the minority carrier lifetime is a powerful tool in the field of semiconductor material characterization as it is very sensitive to electrically active defects. Furthermore, it is applicable to a wide range of samples such as ingots or wafers. In this work, a systematic theoretical analysis of the steady-state approach is presented. It is shown how the measured lifetime relates to the intrinsic bulk lifetime for a given material quality, sample thickness, and surface passivation. This makes the bulk properties experimentally accessible by separating them from the surface effects. In particular, closed analytical solutions of the most important cases, such as passivated and unpassivated wafers and blocks are given. Based on these results, a criterion for a critical sample thickness is given beyond which a lifetime measurement allows deducing the bulk properties for a given surface recombination. These results are of particular interest for semiconductor material diagnostics especially for photovoltaic applications but not limited to this field.Comment: 17 pages, 3 figure

    Recovering the state sequence of hidden Markov models using mean-field approximations

    Full text link
    Inferring the sequence of states from observations is one of the most fundamental problems in Hidden Markov Models. In statistical physics language, this problem is equivalent to computing the marginals of a one-dimensional model with a random external field. While this task can be accomplished through transfer matrix methods, it becomes quickly intractable when the underlying state space is large. This paper develops several low-complexity approximate algorithms to address this inference problem when the state space becomes large. The new algorithms are based on various mean-field approximations of the transfer matrix. Their performances are studied in detail on a simple realistic model for DNA pyrosequencing.Comment: 43 pages, 41 figure

    Evidence for a broadly distributed Samoan-plume signature in the northern Lau and North Fiji Basins

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 986–1008, doi:10.1002/2013GC005061.Geochemical enrichment of lavas in the northern Lau Basin may reflect the influx of Samoan-plume mantle into the region. We report major and trace element abundances and He-Sr-Nd-Hf-Pb-isotopic measurements for 23 submarine volcanic glasses covering 10 locations in the northern Lau and North Fiji Basins, and for three samples from Wallis Island, which lies between Samoa and the Lau Basin. These data extend the western limit of geochemical observations in the Basins and improve the resolution of North-South variations in isotopic ratios. The Samoan hot spot track runs along the length of the northern trace of the Lau and North Fiji Basins. We find evidence for a Samoan-plume component in lavas as far West as South Pandora Ridge (SPR), North Fiji Basin. Isotopic signatures in SPR samples are similar to those found in Samoan Upolu shield lavas, but show a slight shift toward MORB-like compositions. We explain the origin of the enriched signatures by a model in which Samoan-plume material and ambient depleted mantle undergo decompression melting during upwelling after transiting from beneath the thick Pacific lithosphere to beneath the thin lithosphere in the northern Lau and North Fiji Basins. Other lavas found in the region with highly depleted isotopic signatures may represent isolated pockets of depleted mantle in the basins that evaded this enrichment process. We further find that mixing between the two components in our model, a variably degassed high-3He/4He Samoan component and depleted MORB, can explain the diversity among geochemical data from the northern Lau Basin.M.G.J. acknowledges support from NSF grants OCE-1061134, OCE-1153894, and EAR-1145202 and J.B.T. acknowledges support from the French Agence Nationale de la Recherche (grant ANR-10-BLANC-0603 M&Ms—Mantle Melting—Measurements, Models, Mechanisms).2014-10-1
    • …
    corecore