Inferring the sequence of states from observations is one of the most
fundamental problems in Hidden Markov Models. In statistical physics language,
this problem is equivalent to computing the marginals of a one-dimensional
model with a random external field. While this task can be accomplished through
transfer matrix methods, it becomes quickly intractable when the underlying
state space is large.
This paper develops several low-complexity approximate algorithms to address
this inference problem when the state space becomes large. The new algorithms
are based on various mean-field approximations of the transfer matrix. Their
performances are studied in detail on a simple realistic model for DNA
pyrosequencing.Comment: 43 pages, 41 figure