1,003 research outputs found
Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data
We describe a procedure to identify and remove a class of non-stationary and
non-harmonic interference lines from gravitational wave interferometer data.
These lines appear to be associated with the external electricity main
supply, but their amplitudes are non-stationary and they do not appear at
harmonics of the fundamental supply frequency. We find an empirical model able
to represent coherently all the non-harmonic lines we have found in the power
spectrum, in terms of an assumed reference signal of the primary supply input
signal. If this signal is not available then it can be reconstructed from the
same data by making use of the coherent line removal algorithm that we have
described elsewhere. All these lines are broadened by frequency changes of the
supply signal, and they corrupt significant frequency ranges of the power
spectrum. The physical process that generates this interference is so far
unknown, but it is highly non-linear and non-stationary. Using our model, we
cancel the interference in the time domain by an adaptive procedure that should
work regardless of the source of the primary interference. We have applied the
method to laser interferometer data from the Glasgow prototype detector, where
all the features we describe in this paper were observed. The algorithm has
been tuned in such a way that the entire series of wide lines corresponding to
the electrical interference are removed, leaving the spectrum clean enough to
detect signals previously masked by them. Single-line signals buried in the
interference can be recovered with at least 75 % of their original signal
amplitude.Comment: 14 pages, 5 figures, Revtex, psfi
Suspensions of supracolloidal magnetic polymers: self-assembly properties from computer simulations
We study self-assembly in suspensions of supracolloidal polymer-like
structures made of crosslinked magnetic particles. Inspired by self-assembly
motifs observed for dipolar hard spheres, we focus on four different topologies
of the polymer-like structures: linear chains, rings, Y-shaped and X-shaped
polymers. We show how the presence of the crosslinkers, the number of beads in
the polymer and the magnetic interparticle interaction affect the structure of
the suspension. It turns out that for the same set of parameters, the rings are
the least active in assembling larger structures, whereas the system of Y- and
especially X-like magnetic polymers tend to form very large loose aggregates
Infinite Kinematic Self-Similarity and Perfect Fluid Spacetimes
Perfect fluid spacetimes admitting a kinematic self-similarity of infinite
type are investigated. In the case of plane, spherically or hyperbolically
symmetric space-times the field equations reduce to a system of autonomous
ordinary differential equations. The qualitative properties of solutions of
this system of equations, and in particular their asymptotic behavior, are
studied. Special cases, including some of the invariant sets and the geodesic
case, are examined in detail and the exact solutions are provided. The class of
solutions exhibiting physical self-similarity are found to play an important
role in describing the asymptotic behavior of the infinite kinematic
self-similar models.Comment: 38 pages, 6 figures. Accepted for publication in General Relativity &
Gravitatio
The information content of gravitational wave harmonics in compact binary inspiral
The nonlinear aspect of gravitational wave generation that produces power at
harmonics of the orbital frequency, above the fundamental quadrupole frequency,
is examined to see what information about the source is contained in these
higher harmonics. We use an order (4/2) post-Newtonian expansion of the
gravitational wave waveform of a binary system to model the signal seen in a
spaceborne gravitational wave detector such as the proposed LISA detector.
Covariance studies are then performed to determine the ultimate accuracy to be
expected when the parameters of the source are fit to the received signal. We
find three areas where the higher harmonics contribute crucial information that
breaks degeneracies in the model and allows otherwise badly-correlated
parameters to be separated and determined. First, we find that the position of
a coalescing massive black hole binary in an ecliptic plane detector, such as
OMEGA, is well-determined with the help of these harmonics. Second, we find
that the individual masses of the stars in a chirping neutron star binary can
be separated because of the mass dependence of the harmonic contributions to
the wave. Finally, we note that supermassive black hole binaries, whose
frequencies are too low to be seen in the detector sensitivity window for long,
may still have their masses, distances, and positions determined since the
information content of the higher harmonics compensates for the information
lost when the orbit-induced modulation of the signal does not last long enough
to be apparent in the data.Comment: 13 pages, 5 figure
Coherent Line Removal: Filtering out harmonically related line interference from experimental data, with application to gravitational wave detectors
We describe a new technique for removing troublesome interference from
external coherent signals present in the gravitational wave spectrum. The
method works when the interference is present in many harmonics, as long as
they remain coherent with one another. The method can remove interference even
when the frequency changes. We apply the method to the data produced by the
Glasgow laser interferometer in 1996 and the entire series of wide lines
corresponding to the electricity supply frequency and its harmonics are
removed, leaving the spectrum clean enough to detect possible signals
previously masked by them. We also study the effects of the line removal on the
statistics of the noise in the time domain. We find that this technique seems
to reduce the level of non-Gaussian noise present in the interferometer and
therefore, it can raise the sensitivity and duty cycle of the detectors.Comment: 14 pages, 8 figures, Revtex, psfig. To appear in Phys. Rev.
Symmetries of Bianchi I space-times
All diagonal proper Bianchi I space-times are determined which admit certain
important symmetries. It is shown that for Homotheties, Conformal motions and
Kinematic Self-Similarities the resulting space-times are defined explicitly in
terms of a set of parameters whereas Affine Collineations, Ricci Collineations
and Curvature Collineations, if they are admitted, they determine the metric
modulo certain algebraic conditions. In all cases the symmetry vectors are
explicitly computed. The physical and the geometrical consequences of the
results are discussed and a new anisitropic fluid, physically valid solution
which admits a proper conformal Killing vector, is given.Comment: 19 pages, LaTex, Accepted for publication in Journal of Mathematical
Physic
Self-assembly of polymer-like structures of magnetic colloids: Langevin dynamics study of basic topologies
We study the self-assembly of colloidal magnetic particles permanently cross-linked into polymer-like structures with different topologies, that we call supracolloidal magnetic polymers (SMPs). In order to understand the influence of the interparticle permanent links, we investigate SMPs holding the main topologies observed in the self-assembly of non-cross-linked magnetic particles via grand canonical Monte Carlo simulations: chains, rings and simple branched structures. Here, using molecular dynamics simulations, we focus on systems of SMP pairs. Our results evidence that the presence of crosslinkers leads to the formation of new types of aggregates, not previously observed for individual magnetic colloids. © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.This research has been supported by the Russian Science Foundation [grant number 17-72-10145]. J.J.C. and T.S. acknowledge funding from a grant awarded by the Conselleria d’Innovació, Recerca i Turisme del Govern de les Illes Balears and the European Social Fund (ESF). T.S. also acknowledges financial support from the Spanish Ministerio de Economía y Competi-tividad and the European Regional Development Fund, [Project number FIS20015-63628-C2-2-R] (AEI/FEDER, UE). P.A.S and S.S.K acknowledge support from the Austrian Research Fund (FWF) [START-Projekt Y 627-N27]. S.S.K. also acknowledges support from the European Commission ETN-COLLDENSE [H2020-MSCA-ITN-2014], [grant number 642774]. The authors would like to thank F. Sciortino for his valuable contribution to the GCMC simulation results
A geometric description of the intermediate behaviour for spatially homogeneous models
A new approach is suggested for the study of geometric symmetries in general
relativity, leading to an invariant characterization of the evolutionary
behaviour for a class of Spatially Homogeneous (SH) vacuum and orthogonal
law perfect fluid models. Exploiting the 1+3 orthonormal frame
formalism, we express the kinematical quantities of a generic symmetry using
expansion-normalized variables. In this way, a specific symmetry assumption
lead to geometric constraints that are combined with the associated
integrability conditions, coming from the existence of the symmetry and the
induced expansion-normalized form of the Einstein's Field Equations (EFE), to
give a close set of compatibility equations. By specializing to the case of a
\emph{Kinematic Conformal Symmetry} (KCS), which is regarded as the direct
generalization of the concept of self-similarity, we give the complete set of
consistency equations for the whole SH dynamical state space. An interesting
aspect of the analysis of the consistency equations is that, \emph{at least}
for class A models which are Locally Rotationally Symmetric or lying within the
invariant subset satisfying , a proper KCS \emph{always
exists} and reduces to a self-similarity of the first or second kind at the
asymptotic regimes, providing a way for the ``geometrization'' of the
intermediate epoch of SH models.Comment: Latex, 15 pages, no figures (uses iopart style/class files); added
one reference and minor corrections; (v3) improved and extended discussion;
minor corrections and several new references are added; to appear in Class.
Quantum Gra
Kinematic self-similar locally rotationally symmetric models
A brief summary of results on kinematic self-similarities in general
relativity is given. Attention is focussed on locally rotationally symmetric
models admitting kinematic self-similar vectors. Coordinate expressions for the
metric and the kinematic self-similar vector are provided.
Einstein's field equations for perfect fluid models are investigated and all
the homothetic perfect fluid solutions admitting a maximal four-parameter group
of isometries are given.Comment: 12 pages, LaTeX, final version, to appear in Class. Quantum Gra
A template bank for gravitational waveforms from coalescing binary black holes: non-spinning binaries
Gravitational waveforms from the inspiral and ring-down stages of the binary
black hole coalescences can be modelled accurately by
approximation/perturbation techniques in general relativity. Recent progress in
numerical relativity has enabled us to model also the non-perturbative merger
phase of the binary black-hole coalescence problem. This enables us to
\emph{coherently} search for all three stages of the coalescence of
non-spinning binary black holes using a single template bank. Taking our
motivation from these results, we propose a family of template waveforms which
can model the inspiral, merger, and ring-down stages of the coalescence of
non-spinning binary black holes that follow quasi-circular inspiral. This
two-dimensional template family is explicitly parametrized by the physical
parameters of the binary. We show that the template family is not only
\emph{effectual} in detecting the signals from black hole coalescences, but
also \emph{faithful} in estimating the parameters of the binary. We compare the
sensitivity of a search (in the context of different ground-based
interferometers) using all three stages of the black hole coalescence with
other template-based searches which look for individual stages separately. We
find that the proposed search is significantly more sensitive than other
template-based searches for a substantial mass-range, potentially bringing
about remarkable improvement in the event-rate of ground-based interferometers.
As part of this work, we also prescribe a general procedure to construct
interpolated template banks using non-spinning black hole waveforms produced by
numerical relativity.Comment: A typo fixed in Eq.(B11
- …