100 research outputs found

    Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    Get PDF
    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals

    Design of a bed load and driftwood filtering dam, analysis of the phenomena and hydraulic design

    Get PDF
    Flood protection often calls on to the realization of retention works for bed load as well as wood and debris flow. Certain relatively recent arrangements did not perform according to their intended function, what shows the complexity of the design and the implementation of such works. Adaptations were necessary to reach the security objectives. The design of a retention dam for solid materials and floating driftwood requires the consideration of numerous hydraulic and material transport processes. The analyses and design validation can be made with two approaches: physical modelling by the construction of a reduced scale model and the test realization or numerical simulation, by means of software packages such as GESMAT (1D) or TOPOFLOW (2D). The present work consists in implementing both approaches, in estimating and in comparing the answers which could be given for a bed load and debris flow filtering dam on a river with a slope of the order of 10%. Thanks to water level gauges and visual observations during tests on the physical model, the progression of the obstructions by driftwood and bed load is well understood, and the effectiveness of these obstructions proven. The tested work plays at first a role of filtering and retention and secondly a role of side overflow towards a zone with low damage potential, when the capacity of the in-stream retention space is reached. The performed numerical simulations, essentially in 1D, reproduce well the phenomena of bed load aggradation. Moreover, the potential obstruction by floating wood is considered and influences the behavior of the structure. By putting in parallel physical and numerical models, it was possible thanks to the results from the physical scale model to refine the numerical simulation tools taking into consideration additional components and behavior-type rules. These further established rules can now be used for other cases where physical modelling is not foreseen

    Morphological stasis masks ecologically divergent coral species on tropical reefs

    Get PDF
    Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden'' conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively
    • …
    corecore