1,429 research outputs found

    X-ray Scattering Study of the spin-Peierls transition and soft phonon behavior in TiOCl

    Full text link
    We have studied the S=1/2 quasi-one-dimensional antiferromagnet TiOCl using single crystal x-ray diffraction and inelastic x-ray scattering techniques. The Ti ions form staggered spin chains which dimerize below Tc1 = 66 K and have an incommensurate lattice distortion between Tc1 and Tc2 = 92 K. Based on our measurements of the intensities, wave vectors, and harmonics of the incommensurate superlattice peaks, we construct a model for the incommensurate modulation. The results are in good agreement with a soliton lattice model, though some quantitative discrepancies exist near Tc2. The behavior of the phonons has been studied using inelastic x-ray scattering with ~2 meV energy resolution. For the first time, a zone boundary phonon which softens at the spin-Peierls temperature Tsp has been observed. Our results show reasonably good quantitative agreement with the Cross-Fisher theory for the phonon dynamics at wave vectors near the zone boundary and temperatures near Tsp. However, not all aspects of the data can be described, such as the strong overdamping of the soft mode above Tsp. Overall, our results show that TiOCl is a good realization of a spin-Peierls system, where the phonon softening allows us to identify the transition temperature as Tsp=Tc2=92 KComment: 14 pages, 14 figure

    Engaging Honors Students with Active Learning

    Get PDF
    At Bowling GreenState University in Ohio, three librarians collaborated with the director of the Honors program to develop an active learning experience for a critical thinking course taken by first year students. A 50 minute library session was developed that could be used for all sections of the course

    Design and development of a deployable self-inflating adaptive membrane

    Get PDF
    Space structures nowadays are often designed to serve just one objective during their mission life, examples include truss structures that are used as support structures, solar sails for propulsion or antennas for communication. Each and every single one of these structures is optimized to serve just their distinct purpose and are more or less useless for the rest of the mission and therefore dead weight. By developing a smart structure that can change its shape and therefore adapt to different mission requirements in a single structure, the flexibility of the spacecraft can be increased by greatly decreasing the mass of the entire system. This paper will introduce such an adaptive structure called the Self-inflating Adaptive Membrane (SAM) concept which is being developed at the Advanced Space Concepts Laboratory of the University of Strathclyde. An idea presented in this paper is to adapt these basic changeable elements from nature’s heliotropism. Heliotropism describes a movement of a plant towards the sun during a day; the movement is initiated by turgor pressure change between adjacent cells. The shape change of the global structure can be significant by adding up these local changes induced by local elements, for example the cell’s length. To imitate the turgor pressure change between the motor cells in plants to space structures, piezoelectric micro pumps are added between two neighboring cells. A passive inflation technique is used for deploying the membrane at its destination in space. The trapped air in the spheres will inflate the spheres when subjected to vacuum, therefore no pump or secondary active deployment methods are needed. The paper will present the idea behind the adaption of nature’s heliotropism principle to space structures. The feasibility of the residual air inflation method is verified by LS-DYNA simulations and prototype bench tests under vacuum conditions. Additionally, manufacturing techniques and folding patterns are presented to optimize the actual bench test structure and to minimize the required storage volume. It is shown that through a bio-inspired concept, a high ratio of adaptability of the membrane can be obtained. The paper concludes with the design of a technology demonstrator for a sounding rocket experiment to be launched in March 2013 from the Swedish launch side Esrange

    Crystallization in suspensions of hard spheres: A Monte Carlo and Molecular Dynamics simulation study

    Get PDF
    The crystallization of a metastable melt is one of the most important non equilibrium phenomena in condensed matter physics, and hard sphere colloidal model systems have been used for several decades to investigate this process by experimental observation and computer simulation. Nevertheless, there is still an unexplained discrepancy between simulation data and experimental nucleation rate densities. In this paper we examine the nucleation process in hard spheres using molecular dynamics and Monte Carlo simulation. We show that the crystallization process is mediated by precursors of low orientational bond-order and that our simulation data fairly match the experimental data sets

    Six-reflection meV-monochromator for synchrotron radiation

    Get PDF
    A design is presented for a cryogenically stabilized monochromator for 10–40 keV synchrotron radiation that uses six crystal reflections to achieve a meV-bandpass with high efficiency

    Evidence of short time dynamical correlations in simple liquids

    Full text link
    We report a molecular dynamics (MD) study of the collective dynamics of a simple monatomic liquid -interacting through a two body potential that mimics that of lithium- across the liquid-glass transition. In the glassy phase we find evidences of a fast relaxation process similar to that recently found in Lennard-Jones glasses. The origin of this process is ascribed to the topological disorder, i.e. to the dephasing of the different momentum QQ Fourier components of the actual normal modes of vibration of the disordered structure. More important, we find that the fast relaxation persists in the liquid phase with almost no temperature dependence of its characteristic parameters (strength and relaxation time). We conclude, therefore, that in the liquid phase well above the melting point, at variance with the usual assumption of {\it un-correlated} binary collisions, the short time particles motion is strongly {\it correlated} and can be described via a normal mode expansion of the atomic dynamics.Comment: 7 pages, 7 .eps figs. To appear in Phys. Rev.

    The Biological Standard of Living in the two Germanies.

    Get PDF
    Physical stature is used as a proxy for the biological standard of living in the two Germanies before and after unification in an analysis of a cross-sectional sample (1998) of adult heights, as well as among military recruits of the 1990s. West Germans tended to be taller than East Germans throughout the period under consideration. Contrary to official proclamations of a classless society, there were substantial social differences in physical stature in East-Germany. Social differences in height were greater in the East among females, and less among males than in the West. The difficulties experienced by the East-German population after 1961 is evident in the increase in social inequality of physical stature thereafter, as well as in the increasing gap relative to the height of the West-German population. After unification, however, there is a tendency for East-German males, but not of females, to catch up with their West-German counterparts

    Charge-spin correlation in van der Waals antiferromagenet NiPS3

    Get PDF
    Strong charge-spin coupling is found in a layered transition-metal trichalcogenide NiPS3, a van derWaals antiferromagnet, from our study of the electronic structure using several experimental and theoretical tools: spectroscopic ellipsometry, x-ray absorption and photoemission spectroscopy, and density-functional calculations. NiPS3 displays an anomalous shift in the optical spectral weight at the magnetic ordering temperature, reflecting a strong coupling between the electronic and magnetic structures. X-ray absorption, photoemission and optical spectra support a self-doped ground state in NiPS3. Our work demonstrates that layered transition-metal trichalcogenide magnets are a useful candidate for the study of correlated-electron physics in two-dimensional magnetic material.Comment: 6 pages, 3 figur

    Evidence of two viscous relaxation processes in the collective dynamics of liquid lithium

    Full text link
    New inelastic X-ray scattering experiments have been performed on liquid lithium in a wide wavevector range. With respect to the previous measurements, the instrumental resolution, improved up to 1.5 meV, allows to accurately investigate the dynamical processes determining the observed shape of the the dynamic structure factor, S(Q,ω)S(Q,\omega). A detailed analysis of the lineshapes shows the co-existence of relaxation processes with both a slow and a fast characteristic timescales, and therefore that pictures of the relaxation mechanisms based on a simple viscoelastic model must be abandoned.Comment: 5 pages, 4 .PS figure
    • 

    corecore