43 research outputs found

    The Effect of Surfactants and pH Modifying Agents on the Dissolution and Permeation of Pimobendan

    Get PDF
    Solubility and permeability are key parameters for establishing in vitro-in vivo correlation for poorly water-soluble active pharmaceutical ingredients (APIs). Recent studies demonstrate that not only solubility, but also effective permeability of the API may change due to the addition of solubilizing agents, and there is a certain mathematical relation between these physicochemical parameters. The aim of this study was to show the importance of early screening of solubility and permeability in presence of additives in order to achieve the expected bioavailability of the API. In this work, the effect of surfactants and microenvironmental pH modifiers were in focus, and pimobendan was chosen as model drug.In the case of pH modifiers, the equilibrium solubility of the API increased, while the permeability decreased significantly. No negative effect was observed for two surfactants at low additive levels, but these two additives also exhibited a slightly negative effect on permeability when used at higher concentrations. In the simultaneous dissolution-permeation studies the surfactants-containing formulation was found to have slightly higher flux than the pH-modifier-containing one. It can be due to the phenomenon that the dissolution of the active substance can be enhanced by these surfactants without any significant permeability reducing effect.The results obtained from the present study clearly demonstrate the importance of studying drug-additive interactions in every step of formulation development and based on these, the selection of the appropriate quality and quantity of additives. In addition, the results also underline the significance of performing simultaneous dissolution-permeation studies to predict bioavailability

    Gel structures containing Al(III)

    No full text

    SAS experiments on inorganic gels

    No full text

    Gel Structures Containing Al(III)

    No full text

    Nanostructure of gel-derived Aluminosilicate Materials

    No full text
    In the present work, aluminosilicate aerogels prepared under various conditions were compared with respect to their nanostructures and porosity. The purpose of this investigation was to find a suitable way to predict the final product structure and to tailor a required texture. Several Al and Si precursors (Al nitrate, Al isopropoxide, Al acetate, tetraethoxysilane (TEOS), and sodium silicate) were used in our examinations; the solvent content (water and alcohols), surfactants, as well as the catalysts were varied. In addition, the aerogels were subjected to various heat treatments. Hybrid aerogels were synthesized by the addition of different polymers (poly(acrylic acid), polyvinyl acetate, and polydimethylsiloxane). Aluminosilicate and hybrid aerogel structures were investigated by 27Al MAS NMR, SAXS, SEM, and porosity measurements. Loose fractal structures with a good porosity and high Al incorporation can be achieved from TEOS and Al nitrate or isopropoxide via a sol-gel preparation route. The use of Al acetate led to compact aerogel structures independently of the Si precursor, the pH, and the catalyst

    Investigation and mathematical description of the real driving force of passive transport of drug molecules from supersaturated solutions

    No full text
    The aim of this study was to investigate the impact of formulation excipients and solubilizing additives on dissolution, supersaturation, and membrane transport of an active pharmaceutical ingredient (API). When a poorly water-soluble API is formulated to enhance its dissolution, additives, such as surfactants, polymers, and cyclodextrins, have an effect not only on dissolution profile but also on the measured physicochemical properties (solubility, pKa, permeability) of the drug while the excipient is present, therefore also affecting the driving force of membrane transport. Meloxicam, a nonsteroidal anti-inflammatory drug, was chosen as a poorly water-soluble model drug and formulated in order to enhance its dissolution using solvent-based electrospinning. Three polyvinylpyrrolidone (PVP) derivatives (K30, K90, and VA 64), Soluplus, and (2-hydroxypropyl)-尾-cyclodextrin were used to create five different amorphous solid dispersions of meloxicam. Through experimental design, the various formulation additives that could influence the characteristics of dissolution and permeation through artificial membrane were observed by carrying out a simultaneous dissolution-permeation study with a side-by-side diffusion cell, 渭FLUX. Although the dissolution profiles of the formulations were found to be very similar, in the case of Soluplus containing formulation the flux was superior, showing that the driving force of membrane transport cannot be simplified to the concentration gradient. Supersaturation gradient, the difference in degree of supersaturation (defined as the ratio of dissolved amount of the drug to its thermodynamic solubility) between the donor and acceptor side, was found to be the driving force of membrane transport. It was mathematically derived from Fick's first law, and experimentally proved to be universal on several meloxicam containing ASDs and DMSO stock solution. 漏 2016 American Chemical Society
    corecore