11 research outputs found

    Neglected obstetric haemorrhage leading to acute kidney injury

    Get PDF
    Pregnancy related acute kidney injury takes substantial share of acute kidney injury (AKI) in India, with obstetrical haemorrhage having high morbidity and mortality. A young female had neglected obstetric haemorrhage (unrecognized intrauterine and massive intraperitoneal bleeding post caesarean, due to uterine trauma and atony) and dangerous intra-abdominal hypertension with exsanguination eventually leading to shock, multifactorial AKI, metabolic acidosis, and hyperkalemia. Intensive and aggressive management with subtotal hysterectomy, inotropes, fluid management, mechanical ventilation, tracheostomy, and hemodialysis changed the outcome. Despite odds against, neglected obstetric haemorrhage with complicated AKI, was managed successfully by emergency hysterectomy, aggressive intervention for AKI with intensive fluid, ventilatory management and daily hemodialysis. Timely identification and aggressive management of this condition and complications is pivotal in preventing complications, morbidity, and maternal mortality.

    Modulation of key metabolic enzyme of Labeo rohita (Hamilton) juvenile: effect of dietary starch type, protein level and exogenous alpha-amylase in the diet

    No full text
    A 60-day feeding trial was conducted to delineate the effect of both gelatinized (G) and non-gelatinized (NG) corn with or without supplementation of exogenous alpha-amylase, either at optimum (35%) or sub-optimum (27%) protein levels, on blood glucose, and the key metabolic enzymes of glycolysis (hexokinase, HK), gluconeogenesis (glucose-6 phosphatase, G6Pase and fructose-1,6 bisphosphatase, FBPase), lipogenesis (glucose-6 phaosphate dehydrogenase, G6PD) and amino acid metabolism (alanine amino transfersae, ALT and aspartate amino transferase, AST) in Labeo rohita. Three hundred and sixty juveniles (average weight 10 +/- A 0.15 g) were randomly distributed into 12 treatment groups with each of two replicates. Twelve semi-purified diets containing either 35 or 27% crude protein were prepared by including G or NG corn as carbohydrate source with different levels of microbial alpha-amylase (0, 50, 100 and 150 mg kg(-1)). The G corn fed groups showed significantly higher (P 0.05) on liver HK activity, but the optimum crude protein (35%) fed group showed higher HK activity than their low protein counterparts. The sub-optimum crude protein (27%) fed group showed significantly higher (P < 0.05) G6PD activity than the optimum protein fed group, whereas the reverse trend was observed for HK, G6Pase, FBPase, ALT and AST activity. Addition of 50 mg alpha-amylase kg(-1) feed showed increased blood glucose and G6PD activity of the NG corn fed group, whereas the reverse trend was found for G6Pase, FBPase, ALT and AST activity in liver, which was similar to that of the G or NG corn supplemented with 100/150 mg alpha-amylase kg(-1) feed. Data on enzyme activities suggest that NG corn in the diet significantly induced more gluconeogenic and amino acid metabolic enzyme activity, whereas G corn induced increased lipogenic enzyme activity. Increased amino acid catabolic enzyme (ALT and AST) activity was observed either at optimum protein (35%) irrespective of corn type or NG corn without supplementation of alpha-amylase irrespective of protein level in the diet

    Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non-gelatinized starch diet

    No full text
    A 60-day experiment was conducted to study the effect of dietary gelatinized (G) and non-gelatinized (NG) starch on the key metabolic enzymes of glycolysis (hexokinase, glucokinase, pyruvate kinase, and lactate dehydrogenase), gluconeogenesis (glucose-6 phosphatase and fructose-1,6 bisphosphatase), protein metabolism (aspartate amino transferase and alanine amino transferase), and TCA cycle (malate dehydrogenase) in Labeo rohita juveniles. In the analysis, 234 juveniles (2.53 +/- A 0.04 g) were randomly distributed into six treatment groups each with three replicates. Six semi-purified diets containing NG and G cornstarch, each at six levels of inclusion (0, 20, 40, 60, 80, and 100) were prepared viz., T1 (100% NG, 0% G starch), T2 (80% NG, 20% G starch), T3 (60% NG, 40% G starch), T4 (40% NG, 60% G starch), T5 (20% NG, 80% G starch), and T6 (0% NG, 100% G starch). Dietary G:NG starch ratio had a significant (P 0.05) influenced by the type of dietary starch. The alanine amino transferase activity in both liver and muscle showed an increasing trend with the decrease in the dietary G level. The liver and muscle malate dehydrogenase activities were lowest in the T6 group and highest in the T1 group. Results suggest that NG (100%) starch diet significantly induced more the enzyme activities of amino acid metabolism, gluconeogenesis, and TCA cycle, whereas partial or total replacement of raw starch by gelatinized starch increased the glycolytic enzyme activity

    InAs-Al Hybrid Devices Passing the Topological Gap Protocol

    Full text link
    We present measurements and simulations of semiconductor-superconductor heterostructure devices that are consistent with the observation of topological superconductivity and Majorana zero modes. The devices are fabricated from high-mobility two-dimensional electron gases in which quasi-one-dimensional wires are defined by electrostatic gates. These devices enable measurements of local and non-local transport properties and have been optimized via extensive simulations for robustness against non-uniformity and disorder. Our main result is that several devices, fabricated according to the design's engineering specifications, have passed the topological gap protocol defined in Pikulin {\it et al.}\ [arXiv:2103.12217]. This protocol is a stringent test composed of a sequence of three-terminal local and non-local transport measurements performed while varying the magnetic field, semiconductor electron density, and junction transparencies. Passing the protocol indicates a high probability of detection of a topological phase hosting Majorana zero modes. Our experimental results are consistent with a quantum phase transition into a topological superconducting phase that extends over several hundred millitesla in magnetic field and several millivolts in gate voltage, corresponding to approximately one hundred micro-electron-volts in Zeeman energy and chemical potential in the semiconducting wire. These regions feature a closing and re-opening of the bulk gap, with simultaneous zero-bias conductance peaks at {\it both} ends of the devices that withstand changes in the junction transparencies. The measured maximum topological gaps in our devices are 20-30μ30\,\mueV. This demonstration is a prerequisite for experiments involving fusion and braiding of Majorana zero modes.Comment: Fixed typos. Fig. 3 is now readable by Adobe Reade

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore