21 research outputs found

    Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach

    Get PDF
    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases

    Deletions in the MAL gene result in loss of Mal protein, defining the rare inherited AnWj-negative blood group phenotype

    Get PDF
    The genetic background of the high prevalence red blood cell antigen AnWj has remained unresolved since its identification in 1972, despite reported associations with both CD44 and Smyd1 histone methyltransferase. Development of anti-AnWj, which may be clinically significant, is usually due to transient suppression of antigen expression, but a small number of individuals with persistent, autosomally-recessive inherited AnWj-negative phenotype have been reported. Whole exome sequencing of individuals with the rare inherited AnWj-negative phenotype revealed no shared mutations in CD44H or SMYD1, but instead we discovered homozygosity for the same large exonic deletion in MAL, which was confirmed in additional unrelated AnWj-negative individuals. MAL encodes an integral multi-pass membrane proteolipid, Myelin and Lymphocyte protein (Mal), which has been reported to have essential roles in cell transport and membrane stability. AnWj-positive individuals were shown to express full-length Mal on their red cell membranes, which was not present on the membranes of AnWj-negative individuals, whether of an inherited or suppression background. Furthermore, binding of anti-AnWj was able to inhibit binding of anti-Mal to AnWj-positive red cells, demonstrating the antibodies bind to the same molecule. Over-expression of Mal in an erythroid cell-line resulted in expression of AnWj antigen, regardless of the presence or absence of CD44, demonstrating that Mal is both necessary and sufficient for AnWj expression. Our data resolve the genetic background of the inherited AnWj-negative phenotype, forming the basis of a new blood group system, further reducing the number of remaining unsolved blood group antigens

    Autophagy facilitates organelle clearance during differentiation of human erythroblasts:Evidence for a role for ATG4 paralogs during autophagosome maturation

    No full text
    Wholesale depletion of membrane organelles and extrusion of the nucleus are hallmarks of mammalian erythropoiesis. Using quantitative EM and fluorescence imaging we have investigated how autophagy contributes to organelle removal in an ex vivo model of human erythroid differentiation. We found that autophagy is induced at the polychromatic erythroid stage, and that autophagosomes remain abundant until enucleation. This stimulation of autophagy was concomitant with the transcriptional upregulation of many autophagy genes: of note, expression of all ATG8 mammalian paralog family members was stimulated, and increased expression of a subset of ATG4 family members (ATG4A and ATG4D) was also observed. Stable expression of dominant-negative ATG4 cysteine mutants (ATG4B(C74A); ATG4D(C144A)) did not markedly delay or accelerate differentiation of human erythroid cells; however, quantitative EM demonstrated that autophagosomes are assembled less efficiently in ATG4B(C74A)-expressing progenitor cells, and that cells expressing either mutant accumulate enlarged amphisomes that cannot be degraded. The appearance of these hybrid autophagosome/endosome structures correlated with the contraction of the lysosomal compartment, suggesting that the actions of ATG4 family members (particularly ATG4B) are required for the control of autophagosome fusion with late, degradative compartments in differentiating human erythroblasts

    Induction of adult levels of β-globin in human erythroid cells that intrinsically express embryonic or fetal globin by transduction with KLF1 and BCL11A-XL

    No full text
    A major barrier to the clinical use of erythrocytes generated in vitro from pluripotent stem cells or cord blood progenitors is failure of these erythrocytes to express adult hemoglobin. The key regulators of globin switching KLF1 and BCL11A are absent or at a lower level than in adult cells in K562 and erythroid cells differentiated in vitro from induced pluripotent stem cells and cord blood progenitors. Transfection or transduction of K562 and cord blood erythroid cells with either KLF1 or BCL11A-XL had little effect on β-globin expression. In contrast, transduction with both transcription factors stimulated β-globin expression. Similarly, increasing the level of BCL11A-XL in the induced pluripotent stem cell-derived erythroid cell line HiDEP-1, which has levels of endogenous KLF1 similar to adult cells but lacks BCL11A, resulted in levels of β-globin equivalent to that of adult erythroid cells. Interestingly, this increase in β-globin was coincident with a decrease in ε− and ζ−, but not γ-globin, implicating BCL11A in repression of embryonic globin expression. The data show that KLF1 and BCL11A-XL together are required, but sufficient to induce adult levels of β-globin in induced pluripotent stem cell and cord blood-derived erythroid cells that intrinsically express embryonic or fetal globin
    corecore