821 research outputs found

    Statistical thermodynamics for a non-commutative special relativity: Emergence of a generalized quantum dynamics

    Full text link
    There ought to exist a description of quantum field theory which does not depend on an external classical time. To achieve this goal, in a recent paper we have proposed a non-commutative special relativity in which space-time and matter degrees of freedom are treated as classical matrices with arbitrary commutation relations, and a space-time line element is defined using a trace. In the present paper, following the theory of Trace Dynamics, we construct a statistical thermodynamics for the non-commutative special relativity, and show that one arrives at a generalized quantum dynamics in which space and time are non-classical and have an operator status. In a future work, we will show how standard quantum theory on a classical space-time background is recovered from here.Comment: 21 pages. arXiv admin note: text overlap with arXiv:1106.091

    Radiation flux and spectrum in the Vaidya collapse model

    Get PDF
    We consider the quantization of a massless scalar field, using the geometric optics approximation, in the background spacetime of a collapsing spherical self-similar Vaidya star, which forms a black hole or a naked singularity. We show that the outgoing radiation flux of the quantized scalar field diverges on the Cauchy horizon. The spectrum of the produced scalar partcles is non-thermal when the background develops a naked singularity. These results are analogous to those obtained for the scalar quantization on a self-similar dust cloud.Comment: 10 pages, Latex Fil

    Development and validation of resource flexibility measures for manufacturing industry

    Get PDF
    Purpose: Global competition and ever changing customers demand have made manufacturing organizations to rapidly adjust to complexities, uncertainties, and changes. Therefore, flexibility in manufacturing resources is necessary to respond cost effectively and rapidly to changing production needs and requirements. Ability of manufacturing resources to dynamically reallocate from one stage of a production process to another in response to shifting bottlenecks is recognized as resource flexibility. This paper aims to develop and validate resource flexibility measures for manufacturing industry that could be used by managers/ practitioners in assessing and improving the status of resource flexibility for the optimum utilization of resources. Design/methodology/approach: The study involves survey carried out in Indian manufacturing industry using a questionnaire to assess the status of various aspects of resource flexibility and their relationships. A questionnaire was specially designed covering various parameters of resource flexibility. Its reliability was checked by finding the value of Cronback alpha (0.8417). Relative weightage of various measures was found out by using Analytical Hierarchy Process (AHP). Pearson’s coefficient of correlation analysis was carried out to find out relationships between various parameters. Findings: From detailed review of literature on resource flexibility, 17 measures of resource flexibility and 47 variables were identified. The questionnaire included questions on all these measures and parameters. ‘Ability of machines to perform diverse set of operations’ and ability of workers to work on different machines’ emerged to be important measures with contributing weightage of 20.19% and 17.58% respectively. All the measures were found to be significantly correlated with overall resource flexibility except ‘training of workers’, as shown by Pearson’s coefficient of correlation. This indicates that companies do not want to spend on worker training. Practical implications: The study provides guidelines to managers/ practitioners in assessing and managing resource flexibility for optimum utilization of resources. This study can also help the firm’s management to identify the measures and variables to manage resource flexibility and the order in which stress should be given to various measures and actions. The developed and validated measures can be used globally for managing the resource flexibility in manufacturing sector. Originality/value: In this work, the theoretical perspective has been used to prepare the instrument from a detailed review of literature and then the study carried out using the questionnaire in an area where such studies were not carried out earlier.Peer Reviewe

    Trace dynamics and a noncommutative special relativity

    Full text link
    Trace Dynamics is a classical dynamical theory of noncommuting matrices in which cyclic permutation inside a trace is used to define the derivative with respect to an operator. We use the methods of Trace Dynamics to construct a noncommutative special relativity. We define a line-element using the Trace over spacetime coordinates which are assumed to be operators. The line-element is shown to be invariant under standard Lorentz transformations, and is used to construct a noncommutative relativistic dynamics. The eventual motivation for constructing such a noncommutative relativity is to relate the statistical thermodynamics of this classical theory to quantum mechanics.Comment: 9 pages. To appear in Physics Letters

    Bonding and Integration of C-C Composite to Cu-Clad-Molybdenum for Thermal Management Applications

    Get PDF
    Two- and three-dimensional carbon-carbon composites with either resin-derived matrix or CVI matrix were joined to Cu-clad-Mo using active Ag-Cu braze alloys for thermal management applications. The joint microstructure and composition were examined using Field-Emission Scanning Electron Microscopy and Energy-Dispersive Spectroscopy, and the joint hardness was characterized using the Knoop microhardness testing. Observations on the infiltration of the composite with molten braze, dissolution of metal substrate, and solute segregation at the C-C surface have been discussed. The thermal response of the integrated assembly is also briefly discussed

    Determination of optimal tool path in drilling operation using Modified Shuffled Frog Leaping Algorithm

    Get PDF
    Applications like boilerplates, food-industry processing separator, printed circuit boards, drum and trammel screens, etc. consists of a matrix of a large number of holes. The primary issue involved in hole-making operations is a tool travel time. It is often necessary to find the optimal sequence of operations so that the total processing cost of hole-making operations can be minimized. In this work, therefore an attempt is made to reduce the total tool travel of hole-making operations by applying a relatively new optimization algorithm known as modified shuffled frog leaping for determining the optimal sequence of operations. Modification is made in the existing shuffled frog-leaping algorithm by introducing three parameters with their positive values to widen the search capability of existing algorithms. A case study of the printed circuit board is considered in this work to demonstrate the proposed approach. Obtained results of optimization using modified shuffled frog leaping algorithm are compared with those obtained using particle swarm optimization, firefly algorithm and shortest path search algorithm

    Heuristic Approach to Satisfaction Level of Demand Maker in Three Stage Scheduling with Fuzzy Due Time

    Get PDF
    This paper discusses three stage flow shop scheduling including transportation time in frame work of fuzzy due date with bi-objective criteria. On one side to minimize the tardiness of jobs while on other way to determine the satisfaction level of demand maker with the help of fuzzy due date to each job. The analysis has been made through heuristic algorithm based on mathematical theorem regarding tardiness of the jobs. The objective of the paper is to find due time to each job and optimal or near optimal sequence of jobs in order to minimize the tardiness of jobs so that they can be performed within time. The paper ends with a numerical illustration and analyse graphically the satisfaction level of demand maker. Keywords: Fuzzy processing time, trapezoidal, tardiness, <AHR>, linguistic variable, fuzzy quantifier

    Investigation of the Effect of Built Orientation on Mechanical Properties and Total Cost of FDM Parts

    Get PDF
    AbstractFused deposition modeling (FDM) is one of the rapid prototyping methods that produce prototypes from plastic materials such as acrylonitrile butadiene styrene (ABS) by laying tracks of semi-molten plastic filament onto a platform in a layer wise manner from bottom to top. In FDM, one of the critical factor is to select the build up orientation of the model since it affects the different areas of the model like main material, support material, built up time, total cost per part and most important the mechanical properties of the part. In view of this, objective of the present study was to investigate the effect of the built-up orientation on the mechanical properties and total cost of the FDM parts. Experiments were carried out on STRATASYS FDM type rapid prototyping machine coupled with CATALYST software and ABS as main material. Tensile and Flexural specimens were prepared as per the ASTM standard with different built-up orientation and in three geometrical axes. It can be concluded from the experimental analysis that built orientation has significant affect on the tensile, flexural and total cost of the FDM parts. These conclusions will help the design engineers to decide on proper build orientation, so that FDM parts can be fabricated with good mechanical properties at minimum manufacturing cost
    • 

    corecore