86,322 research outputs found

    An Advanced Conceptual Diagnostic Healthcare Framework for Diabetes and Cardiovascular Disorders

    Full text link
    The data mining along with emerging computing techniques have astonishingly influenced the healthcare industry. Researchers have used different Data Mining and Internet of Things (IoT) for enrooting a programmed solution for diabetes and heart patients. However, still, more advanced and united solution is needed that can offer a therapeutic opinion to individual diabetic and cardio patients. Therefore, here, a smart data mining and IoT (SMDIoT) based advanced healthcare system for proficient diabetes and cardiovascular diseases have been proposed. The hybridization of data mining and IoT with other emerging computing techniques is supposed to give an effective and economical solution to diabetes and cardio patients. SMDIoT hybridized the ideas of data mining, Internet of Things, chatbots, contextual entity search (CES), bio-sensors, semantic analysis and granular computing (GC). The bio-sensors of the proposed system assist in getting the current and precise status of the concerned patients so that in case of an emergency, the needful medical assistance can be provided. The novelty lies in the hybrid framework and the adequate support of chatbots, granular computing, context entity search and semantic analysis. The practical implementation of this system is very challenging and costly. However, it appears to be more operative and economical solution for diabetes and cardio patients.Comment: 11 PAGE

    Marginal distributions in (2N)(\bf 2N)-dimensional phase space and the quantum (N+1)(\bf N+1) marginal theorem

    Get PDF
    We study the problem of constructing a probability density in 2N-dimensional phase space which reproduces a given collection of nn joint probability distributions as marginals. Only distributions authorized by quantum mechanics, i.e. depending on a (complete) commuting set of NN variables, are considered. A diagrammatic or graph theoretic formulation of the problem is developed. We then exactly determine the set of ``admissible'' data, i.e. those types of data for which the problem always admits solutions. This is done in the case where the joint distributions originate from quantum mechanics as well as in the case where this constraint is not imposed. In particular, it is shown that a necessary (but not sufficient) condition for the existence of solutions is n≤N+1n\leq N+1. When the data are admissible and the quantum constraint is not imposed, the general solution for the phase space density is determined explicitly. For admissible data of a quantum origin, the general solution is given in certain (but not all) cases. In the remaining cases, only a subset of solutions is obtained.Comment: 29 pages (Work supported by the Indo-French Centre for the Promotion of Advanced Research, Project Nb 1501-02). v2 to add a report-n

    A comprehensive data processing plan for crop calendar MSS signature development from satellite imagery

    Get PDF
    There are no author-identified significant results in this report

    A Cost-Benefit Study of Doing Astrophysics On The Cloud: Production of Image Mosaics

    Get PDF
    Utility grids such as the Amazon EC2 and Amazon S3 clouds offer computational and storage resources that can be used on-demand for a fee by compute- and data-intensive applications. The cost of running an application on such a cloud depends on the compute, storage and communication resources it will provision and consume. Different execution plans of the same application may result in significantly different costs. We studied via simulation the cost performance trade-offs of different execution and resource provisioning plans by creating, under the Amazon cloud fee structure, mosaics with the Montage image mosaic engine, a widely used data- and compute-intensive application. Specifically, we studied the cost of building mosaics of 2MASS data that have sizes of 1, 2 and 4 square degrees, and a 2MASS all-sky mosaic. These are examples of mosaics commonly generated by astronomers. We also study these trade-offs in the context of the storage and communication fees of Amazon S3 when used for long-term application data archiving. Our results show that by provisioning the right amount of storage and compute resources cost can be significantly reduced with no significant impact on application performance

    Electronic Structure and Thermoelectric Prospects of Phosphide Skutterudites

    Full text link
    The prospects for high thermoelectric performance in phosphide skutterudites are investigated based on first principles calculations. We find that stoichiometric CoP_3 differs from the corresponding arsenide and antimonide in that it is metallic. As such the band structure must be modified if high thermopowers are to be achieved. In analogy to the antimonides it is expected that this may be done by filling with La. Calculations for LaFe_4P_12 show that a gap can in fact be opened by La filling, but that the valence band is too light to yield reasonable p-type thermopowers at appropriate carrier densities; n-type La filled material may be more favorable.Comment: 3 pages, 3 figures, 1 tabl

    A 10-day ASCA Observation of the Narrow-line Seyfert~1 galaxy IRAS 13224-3809

    Get PDF
    (Abridged) We present an analysis of a 10-day continuous ASCA observation of the narrow-line Seyfert 1 galaxy IRAS 13224-3809. The soft (0.7-1.3 keV) and hard (1.3-10 keV) X-ray band light curves binned to 5000s reveal trough-to-peak variations by a factor >25 and 20, respectively. The light curves in the soft and hard bands are strongly correlated without any significant delay. However, this correlation is not entirely due to changes in the power-law flux alone but also due to changes in the soft X-ray hump emission above the power law. The presence of a soft X-ray hump below 2 keV, previously detected in ROSAT and ASCA data, is confirmed. Time resolved spectroscopy using daily sampling reveals changes in the power-law slope, with Gamma in the range 1.74-2.47, however, day-to-day variations in Gamma are not significant. The Soft hump emission is found to dominate the observed variability on a timescale of a week, but on shorter timescales (20000s) the power-law component appears to dominate the observed variability. Flux resolved spectroscopy reveals that at high flux levels the power law becomes steeper and the soft hump more pronounced. The steepening of the photon index with the fluxes in the soft and hard bands can be understood in the framework of disk/corona models in which accretion disk is heated by viscous dissipation as well as by reprocessing of hard X-rays following an X-ray flare resulting from coronal dissipation through magnetic reconnection events.Comment: 29 pages, 16 figures, To apear in A&
    • …
    corecore