We study the problem of constructing a probability density in 2N-dimensional
phase space which reproduces a given collection of n joint probability
distributions as marginals. Only distributions authorized by quantum mechanics,
i.e. depending on a (complete) commuting set of N variables, are considered.
A diagrammatic or graph theoretic formulation of the problem is developed. We
then exactly determine the set of ``admissible'' data, i.e. those types of data
for which the problem always admits solutions. This is done in the case where
the joint distributions originate from quantum mechanics as well as in the case
where this constraint is not imposed. In particular, it is shown that a
necessary (but not sufficient) condition for the existence of solutions is
n≤N+1. When the data are admissible and the quantum constraint is not
imposed, the general solution for the phase space density is determined
explicitly. For admissible data of a quantum origin, the general solution is
given in certain (but not all) cases. In the remaining cases, only a subset of
solutions is obtained.Comment: 29 pages (Work supported by the Indo-French Centre for the Promotion
of Advanced Research, Project Nb 1501-02). v2 to add a report-n