83,293 research outputs found

    B(E2) Evaluation for 0+ to 2+ Transitions in Even-Even Nuclei

    Full text link
    A collaborative study by Brookhaven-McMaster-Central Michigan is underway to evaluate B(E2)↑\uparrow for 01+^{+}_{1} →\rightarrow 21+^{+}_{1} transitions. This work is a continuation of a previous USNDP evaluation and has been motivated by a large number of recent measurements and nuclear theory developments. It includes an extended compilation, data evaluation procedures and shell model calculations. The subset of B(E2)↑\uparrow recommended values for nuclei of relevance to the double-beta decay problem is presented, and evaluation policies of experimental data and systematics are discussed. Future plans for completion of the B(E2;01+^{+}_{1} →\rightarrow 21+^{+}_{1}) evaluation project are also described.Comment: 3 pages, 2 tables, 2 figure

    More on the scalar-tensor B-F theory

    Full text link
    This work is based on an earlier proposal \cite{hs} that the membrane B-F theory consists of matter fields alongwith Chern-Simons fields as well as the auxiliary pairs of scalar and tensor fields. We especially discuss the supersymmetry aspects of such a membrane theory. It is concluded that the theory possesses maximal supersymmetry and it is related to the L-BLG theory via a field map. We obtain fuzzy-sphere solution and corresponding tensor field configuration is given.Comment: 19 pages; v2 typo corrected and more reference

    Growth kinetics of physical vapor transport processes: Crystal growth of the optoelectronic material mercurous chloride

    Get PDF
    Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments

    Knowlesi malaria in Vietnam

    Get PDF
    The simian malaria parasite Plasmodium knowlesi is transmitted in the forests of Southeast Asia. Symptomatic zoonotic knowlesi malaria in humans is widespread in the region and is associated with a history of spending time in the jungle. However, there are many settings where knowlesi transmission to humans would be expected but is not found. A recent report on the Ra-glai population of southern central Vietnam is taken as an example to help explain why this may be so

    Magnetocapacitance effect in perovskite-superlattice based multiferroics

    Full text link
    We report the structural and magnetoelectrical properties of La0.7_{0.7}Ca0.3_{0.3}MnO3_3/BaTiO3_3 perovskite superlattices grown on (001)-oriented SrTiO3_3 by the pulsed laser deposition technique. Magnetic hysteresis loops together with temperature dependent magnetic properties exhibit well-defined coercivity and magnetic transition temperature (TC_C) \symbol{126}140 K. DCDC electrical studies of films show that the magnetoresistance (MR) is dependent on the BaTiO3_3 thickness and negative MRMR as high as 30% at 100K are observed. The ACAC electrical studies reveal that the impedance and capacitance in these films vary with the applied magnetic field due to the magnetoelectrical coupling in these structures - a key feature of multiferroics. A negative magnetocapacitance value in the film as high as 3% per tesla at 1kHz and 100K is demonstrated, opening the route for designing novel functional materials.Comment: To be published in Applied Physics Letter

    The role of ferroelectric-ferromagnetic layers on the properties of superlattice-based multiferroics

    Full text link
    A series of superlattices and trilayers composed of ferromagnetic and ferroelectric or paraelectric layers were grown on (100) SrTiO3 by the pulsed laser deposition technique. Their structural and magneto-electric properties were examined. The superlattices made of ferromagnetic Pr0.85Ca0.15MnO3 (PCMO) and a ferroelectric, namely Ba0.6Sr0.4TiO3 (BST) or BaTiO3, showed enhanced magnetoresistance (MR) at high applied magnetic field, whereas such enhancement was absent in Pr0.85Ca0.15MnO3/SrTiO3 superlattices, which clearly demonstrates the preponderant role of the ferroelectric layers in this enhanced MR. Furthermore, the absence of enhanced MR in trilayers of PCMO/BST indicates that the magneto-electric coupling which is responsible for MR in these systems is stronger in multilayers than in their trilayer counterparts.Comment: to be published in J. Appl. Phy
    • …
    corecore