64,702 research outputs found

    Cosmic Evolution in Generalised Brans-Dicke Theory

    Get PDF
    We have studied the Generalised Brans-Dicke theory and obtained exact solutions of a(t),phi(t),and omega(t) for different epochs of the cosmic evolution .We discuss how inflation,decceleration,cosmic acceleration can result from this solution.The time variation of G(t) is also examined.Comment: 12 pages, no figure

    Burglary project

    Get PDF
    This report outlines the process and findings from an innovative project for students. This work was part of the curriculum and involved students working with West Yorkshire Police as part of the safer Leeds project in designing and making a film for students n crime prevention and personal safety in Leed

    Axial and pseudoscalar current correlators and their couplings to eta and etaprime mesons

    Full text link
    Correlators of singlet and octet axial currents, as well as anomaly and pseudoscalar densities have been studied using QCD sum rules. Several of these sum rules are used to determine the couplings f^8_eta, f^0_eta, f^8_etaprime and f^0_etaprime. We find mutually consistent values which are also in agreement with phenomenological values obtained from data on various decay and production rates. While most of the sum rules studied by us are independent of the contributions of direct instantons and screening correction, the singlet-singlet current correlator and the anomaly-anomaly correlator improve by their inclusion.Comment: 31 pages, 11 figure

    Axial Vector Current Matrix Elements and QCD Sum Rules

    Full text link
    The matrix element of the isoscalar axial vector current, uˉγμγ5u+dˉγμγ5d\bar{u}\gamma_\mu\gamma_5u + \bar{d}\gamma_\mu\gamma_5d , between nucleon states is computed using the external field QCD sum rule method. The external field induced correlator, , is calculated from the spectrum of the isoscalar axial vector meson states. Since it is difficult to ascertain, from QCD sum rule for hyperons, the accuracy of validity of flavour SU(3) symmetry in hyperon decays when strange quark mass is taken into account, we rely on the empirical validity of Cabbibo theory to dertermine the matrix element uˉγμγ5u+dˉγμγ5d2sˉγμγ5s\bar{u}\gamma_{\mu}\gamma_5 u + \bar{d}\gamma_{\mu}\gamma_5 d - 2 \bar{s}\gamma_{\mu}\gamma_5 s between nucleon states. Combining with our calculation of uˉγμγ5u+dˉγμγ5d\bar{u}\gamma_{\mu}\gamma_5 u + \bar{d}\gamma_{\mu}\gamma_5 d and the well known nucleon β\beta-decay constant allows us to determine <p,s4/9uˉγμγ5u+1/9dˉγμγ5d+1/9sˉγμγ5sp,s>< p,s| {4/9}\bar{u}\gamma_{\mu}\gamma_5 u + {1/9}\bar{d}\gamma_{\mu}\gamma_5 d + {1/9}\bar{s}\gamma_{\mu}\gamma_5 s |p, s> occuring in the Bjorken sum rule. The result is in reasonable agreement with experiment. We also discuss the role of the anomaly in maintaining flavour symmetry and validity of OZI rule.Comment: 8 pages, 4 figures, revtex

    Evolution of Primordial Black Holes in Loop Quantum Gravity

    Full text link
    In this work, we study the evolution of Primordial Black Holes within the context of Loop Quantum Gravity. First we calculate the scale factor and energy density of the universe for different cosmic era and then taking these as inputs we study evolution of primordial black holes. From our estimation it is found that accretion of radiation does not affect evolution of primordial black holes in loop quantum gravity even though a larger number of primordial black holes may form in early universe in comparison with Einstein's or scalar-tensor theories.Comment: 8 pages, 1 figur

    On long-wavelength magnetic anomalies over Indian region

    Get PDF
    A data set composed of vector magnetic measurements obtained by MAGSAT and very accurate altitude determinations made using Sun sensors and star cameras was used to obtain data for very quiet days over the Indian region at 10 S to 40 N and 60 E to 110 E in an effort to determine the validity of quantitative estimates made from aeromagnetic data obtained by removing the core field. To further account for the external effects, the ring current contributions estimated using both X and Z variations were subtracted from the observed values. Before this, the core contribution was eliminated through a spherical harmonic expansion with terms up to N=13. Analysis of the residual measurements using Fast Fourier techniques indicates that the anomalies contain substantial power for wavelengths of about 1500 kms. Because the ring current effect has a spatial structure of this dimension over India, efforts are being made to exactly eliminate these two interfering effects from the data

    Correlation between structure and properties in multiferroic La0.7_{0.7}Ca0.3_{0.3}MnO3_3/BaTiO3_3 superlattices

    Full text link
    Superlattices composed of ferromagnetics, namely La0.7_{0.7}Ca0.3_{0.3}MnO3_3 (LCMO), and ferroelectrics, namely, BaTiO3_3(BTO) were grown on SrTiO3_3 at 720o^oC by pulsed laser deposition process. While the out-of-plane lattice parameters of the superlattices, as extracted from the X-ray diffraction studies, were found to be dependent on the BTO layer thickness, the in-plane lattice parameter is almost constant. The evolution of the strains, their nature, and their distribution in the samples, were examined by the conventional sin2ψ^2\psi method. The effects of structural variation on the physical properties, as well as the possible role of the strain on inducing the multiferroism in the superlattices, have also been discussed.Comment: To be published in Journal of Applied Physic

    Magnetoresistance behavior of a ferromagnetic shape memory alloy: Ni_1.75Mn_1.25Ga

    Full text link
    A negative-positive-negative switching behavior of magnetoresistance (MR) with temperature is observed in a ferromagnetic shape memory alloy Ni_1.75Mn_1.25Ga. In the austenitic phase between 300 and 120 K, MR is negative due to s-d scattering. Curiously, below 120K MR is positive, while at still lower temperatures in the martensitic phase, MR is negative again. The positive MR cannot be explained by Lorentz contribution and is related to a magnetic transition. Evidence for this is obtained from ab initio density functional theory, a decrease in magnetization and resistivity upturn at 120 K. Theory shows that a ferrimagnetic state with anti-ferromagnetic alignment between the local magnetic moments of the Mn atoms is the energetically favoured ground state. In the martensitic phase, there are two competing factors that govern the MR behavior: a dominant negative trend up to the saturation field due to the decrease of electron scattering at twin and domain boundaries; and a weaker positive trend due to the ferrimagnetic nature of the magnetic state. MR exhibits a hysteresis between heating and cooling that is related to the first order nature of the martensitic phase transition.Comment: 17 pages, 5 figures. Accepted in Phys. Rev.
    corecore