207 research outputs found

    ASASSN-14dq: A fast-declining type II-P Supernova in a low-luminosity host galaxy

    Full text link
    Optical broadband (UBVRI) photometric and low-resolution spectroscopic observations of the type II-P supernova (SN) ASASSN-14dq are presented. ASASSN-14dq exploded in a low-luminosity/metallicity host galaxy UGC 11860, the signatures of which are present as weak iron lines in the photospheric phase spectra. The SN has a plateau duration of \sim\,90 d, with a plateau decline rate of 1.38 mag (100d)1\rm mag\ (100 d)^{-1} in V-band which is higher than most type II-P SNe. ASASSN-14dq is a luminous type II-P SN with a peak VV-band absolute magnitude of -17.7±\,\pm\,0.2 mag. The light curve of ASASSN-14dq indicates it to be a fast-declining type II-P SN, making it a transitional event between the type II-P and II-L SNe. The empirical relation between the steepness parameter and 56Ni\rm ^{56}Ni mass for type II SNe was rebuilt with the help of well-sampled light curves from the literature. A 56Ni\rm ^{56}Ni mass of \sim\,0.029 M_{\odot} was estimated for ASASSN-14dq, which is slightly lower than the expected 56Ni\rm ^{56}Ni mass for a luminous type II-P SN. Using analytical light curve modelling, a progenitor radius of 3.6×1013\rm \sim3.6\times10^{13} cm, an ejecta mass of 10 M\rm \sim10\ M_{\odot} and a total energy of 1.8×1051\rm \sim\,1.8\times 10^{51} ergs was estimated for this event. The photospheric velocity evolution of ASASSN-14dq resembles a type II-P SN, but the Balmer features (Hα\alpha and Hβ\beta) show relatively slow velocity evolution. The high-velocity Hα\alpha feature in the plateau phase, the asymmetric Hα\alpha emission line profile in the nebular phase and the inferred outburst parameters indicate an interaction of the SN ejecta with the circumstellar material (CSM).Comment: 28 pages, 29 figures, Accepted in MNRA

    SN 2018gj: A Short-plateau Type II Supernova with Persistent Blue-shifted H-alpha Emission

    Full text link
    We present an extensive, panchromatic photometric (UV, Optical, and NIR) and low-resolution optical spectroscopic coverage of a Type IIP supernova SN 2018gj that occurred on the outskirts of the host galaxy NGC 6217. From the V-band light curve, we estimate the plateau length to be ~ 70 +- 2 d, placing it among the very few well-sampled short plateau supernovae (SNe). With V-band peak absolute magnitude Mv < -17.0 +- 0.1 mag, it falls in the middle of the luminosity distribution of the Type II SNe. The colour evolution is typical to other Type II SNe except for an early elbow-like feature in the evolution of V-R colour owing to its early transition from the plateau to the nebular phase. Using the expanding photospheric method, we present an independent estimate of the distance to SN 2018gj. We report the spectral evolution to be typical of a Type II SNe. However, we see a persistent blue shift in emission lines until the late nebular phase, not ordinarily observed in Type II SNe. The amount of radioactive nickel (56Ni) yield in the explosion was estimated to be 0.026 +- 0.007 Msol. We infer from semi-analytical modelling, nebular spectrum, and 1-D hydrodynamical modelling that the probable progenitor was a red supergiant with a zero-age-main-sequence mass < 13 Msol. In the simulated hydrodynamical model light curves, reproducing the early optical bolometric light curve required an additional radiation source, which could be the interaction with the proximal circumstellar matter (CSM).Comment: Accepted for publication in ApJ (31 pages, 23 figures and 7 tables

    Spin dynamics in the diluted ferromagnetic Kondo lattice model

    Get PDF
    The interplay of disorder and competing interactions is investigated in the carrier-induced ferromagnetic state of the Kondo lattice model within a numerical finite-size study in which disorder is treated exactly. Competition between impurity spin couplings, stability of the ferromagnetic state, and magnetic transition temperature are quantitatively investigated in terms of magnon properties for different models including dilution, disorder, and weakly-coupled spins. A strong optimization is obtained for T_c at hole doping p << x, highlighting the importance of compensation in diluted magnetic semiconductors. The estimated T_c is in good agreement with experimental results for Ga_{1-x}Mn_x As for corresponding impurity concentration, hole bandwidth, and compensation. Finite-temperature spin dynamics is quantitatively studied within a locally self-consistent magnon renormalization scheme, which yields a substantial enhancement in T_c due to spin clustering, and highlights the nearly-paramagnetic spin dynamics of weakly-coupled spins. The large enhancement in density of low-energy magnetic excitations due to disorder and competing interactions results in a strong thermal decay of magnetization, which fits well with the Bloch form M_0(1-BT^{3/2}) at low temperature, with B of same order of magnitude as obtained in recent squid magnetization measurements on Ga_{1-x}Mn_x As samples.Comment: 13 pages, 14 figure

    Disorder-enhanced delocalization and local-moment quenching in a disordered antiferromagnet

    Full text link
    The interplay of disorder and spin-fluctuation effects in a disordered antiferromagnet is studied. In the weak-disorder regime (W \le U), while the energy gap decreases rapidly with disorder, the sublattice magnetization, including quantum corrections, is found to remain essentially unchanged in the strong correlation limit. Magnon energies and Neel temperature are enhanced by disorder in this limit. A single paradigm of disorder-enhanced delocalization qualitatively accounts for all these weak disorder effects. Vertex corrections and magnon damping, which appear only at order (W/U)^4, are also studied. With increasing disorder a crossover is found at W \sim U, characterized by a rapid decrease in sublattice magnetization due to quenching of local moments, and formation of spin vacancies. The latter suggests a spin-dilution behavior, which is indeed observed in softened magnon modes, lowering of Neel temperature, and enhanced transverse spin fluctuations.Comment: 12 pages, includes 8 postscript figures. To appear in Physical Review B. References adde

    Ferromagnetism in a dilute magnetic semiconductor -- Generalized RKKY interaction and spin-wave excitations

    Full text link
    Carrier-mediated ferromagnetism in a dilute magnetic semiconductor has been studied using i) a single-impurity based generalized RKKY approach which goes beyond linear response theory, and ii) a mean-field-plus-spin-fluctuation (MF+SF) approach within a (purely fermionic) Hubbard-model representation of the magnetic impurities, which incorporates dynamical effects associated with finite frequency spin correlations in the ordered state. Due to a competition between the magnitude of the carrier spin polarization and its oscillation length scale, the ferromagnetic spin coupling is found to be optimized with respect to both hole doping concentration and impurity-carrier spin coupling energy JJ (or equivalently UU). The ferromagnetic transition temperature TcT_c, deteremined within the spin-fluctuation theory, corresponds closely with the observed TcT_c values. Positional disorder of magnetic impurities causes significant stiffening of the high-energy magnon modes. We also explicitly study the stability/instability of the mean-field ferromagnetic state, which highlights the role of competing AF interactions causing spin twisting and noncollinear ferromagnetic ordering.Comment: 10 pages, 12 figure

    Plasma IP-10, apoptotic and angiogenic factors associated with fatal cerebral malaria in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Plasmodium falciparum </it>in a subset of patients can lead to cerebral malaria (CM), a major contributor to malaria-associated mortality. Despite treatment, CM mortality can be as high as 30%, while 10% of survivors of the disease may experience short- and long-term neurological complications. The pathogenesis of CM is mediated by alterations in cytokine and chemokine homeostasis, inflammation as well as vascular injury and repair processes although their roles are not fully understood. The hypothesis for this study is that CM-induced changes in inflammatory, apoptotic and angiogenic factors mediate severity of CM and that their identification will enable development of new prognostic markers and adjunctive therapies for preventing CM mortalities.</p> <p>Methods</p> <p>Plasma samples (133) were obtained from healthy controls (HC, 25), mild malaria (MM, 48), cerebral malaria survivors (CMS, 48), and cerebral malaria non-survivors (CMNS, 12) at admission to the hospital in Jabalpur, India. Plasma levels of 30 biomarkers ((IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGF basic protein, G-CSF, GM-CSF, IFN-γ, IP-10, MCP-1 (MCAF), MIP-1α, MIP-1β, RANTES, TNF-α, Fas-ligand (Fas-L), soluble Fas (sFas), soluble TNF receptor 1 (sTNF-R1) and soluble TNF receptor 2 (sTNFR-2), PDGF bb and VEGF)) were simultaneously measured in an initial subset of ten samples from each group. Only those biomarkers which showed significant differences in the pilot analysis were chosen for testing on all remaining samples. The results were then compared between the four groups to determine their role in CM severity.</p> <p>Results</p> <p>IP-10, sTNF-R2 and sFas were independently associated with increased risk of CM associated mortality. CMNS patients had a significantly lower level of the neuroprotective factor VEGF when compared to other groups (P < 0.0045). The ratios of VEGF to IP-10, sTNF-R2, and sFas distinguished CM survivors from non survivors (P < 0.0001).</p> <p>Conclusion</p> <p>The results suggest that plasma levels of IP-10, sTNF-R2 and sFas may be potential biomarkers of CM severity and mortality. VEGF was found to be protective against CM associated mortality and may be considered for adjunctive therapy to improve the treatment outcome in CM patients.</p
    corecore