
Journal de la Société Française de Statistique
Vol. 155 No. 4 (2014)

Estimation in Multiple Frame Surveys: A Simplified
and Unified Review using the Multiplicity Approach

Titre: Enquêtes à bases multiples : un examen simplifié et unifié à l’estimation sous l’approche de la
multiplicité

Fulvia Mecatti1 and Avinash C. Singh2

Abstract: Multiple frame surveys are useful for reducing cost for given precision constraints, improving coverage
(under or over) and dealing with elusive or rare populations for which a direct sampling frame may not exist. Unlike
model-based coverage bias adjustments traditionally used for single-frame surveys where domains of units subject to
coverage bias are not identificable, multiple frame surveys assume identifiability of such domains, and supplementary
sampling frames along with multiplicity adjustments are used to deal with the coverage bias. Point and variance
estimation for multiple frame surveys are somewhat challenging because of multiplicity of units due to overlapping
frames, and possible duplication of units in the sample. A simple single-frame solution can be used if selected units
from the supplementary frame are screened out whenever they are listed in the main frame. However, this may not
be desirable in practice because a major portion of the cost is already incurred in contacting the selected unit for the
screening information. Despite the practical appeal of multiple frame surveys, they have not been commonly used
possibly because of non-standard complex nature and a lack of general understanding of estimation as well as lack of
consensus about a preferred methodology among researchers. However, there has been a recent resurgence of interest
in multiple frame due to the practical necessity of mitigating increased cost in data collection and use of non-area
frames such as cell and landline telephones. In this paper, we provide a simplified and unified review of different
existing methods which should help in a better understanding in choosing a suitable method in any application, and
promoting more use of multiple frames in practice.

Résumé : Les enquêtes à bases multiples sont utiles afin de réduire les coûts pour une précision donnée ainsi que
pour améliorer la (sous ou sur) couverture et pour le traitement des populations difficiles à joindre ou rares pour
lesquelles il n’existe pas une base de sondage directe. Contrairement aux ajustements pour le biais de couverture
traditionnellement utilisés pour les enquêtes à bases uniques pour lesquelles les sous-groupes d’unités sujets à des biais
de couverture ne sont pas identifiables, les enquêtes à bases multiples font l’hypothèse que les sous-groupes d’unités
sont identifiables et utilisent des bases de sondage supplémentaires ainsi que des ajustements pour la multiplicité afin
de corriger le biais de sous-couverture. L’estimation ponctuelle et l’estimation de la variance présentent un certain
défi dû à la multiplicité des unités provenant de bases chevauchantes et au possible problème de duplicata des unités
dans l’échantillon. Une solution basée sur une unique base peut être utilisé pourvu que les unités échantillonnées
à partir des bases supplémentaires soient dépistées lorsque présente sur la base principale. Cependant, cela n’est
peut-être pas souhaitable en pratique car une partie importante du coût est déjà engagée afin de contacter les unités
lors de l’étape de dépistage. Malgré l’attrait pratique des sondages à bases multiples, ils n’ont pas été couramment
utilisés probablement en raison de leur nature complexe et non-standard et un manque de compréhension générale
de l’estimation ainsi que de l’absence de consensus à propos d’une méthodologie préférée parmi les chercheurs.
Cependant, il y a eu un regain d’intérêt récent pour les bases multiples en raison de la nécessité pratique d’atténuer
l’augmentation des coûts de collecte des données et de l’utilisation des bases non-aréolaires telles que les téléphones
cellulaires et les téléphones fixes . Dans cet article, nous présentons une revue simplifiée et unifiée des différentes
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méthodes existantes, qui permettront de mieux comprendre le choix d’une méthode appropriée dans n’importe quelle
application, et d’encourager la promotion d’une utilisation de méthodes à bases multiples.

Keywords: Coverage bias, Elusive/rare populations, GMHT-reg class, Horvitz-Thompson estimation, Imperfect frames,
Zero functions,
Mots-clés : Bbases imparfaites, Biais de couverture, class GMHT-reg, estimation d’Horvitz-Thompson, populations
rares/difficiles à joindre
AMS 2000 subject classifications: 62D05, 62-02

1. Introduction

Conventional survey sampling methodology assumes at least conceptually the availability of
a complete sampling frame consisting of a list of all sampling units each identified by a label.
However, perfect frames are seldom the case in practice. For instance, the sampling frame can
suffer from under- or over-coverage or both. Under-coverage occurs when the available frame is
incomplete; i.e., it covers only a part of the target population as in the case of a list of only landline
phones without cell phone or non-telephone households in a telephone survey. To overcome this
problem, the original frame is supplemented with additional frames such that the union of all
frames covers the target population. However, this often gives rise to over-coverage because some
units may be present in more than one frame. Over-coverage may also occur in a single complete
frame when a unit is duplicated (i.e., counted more than once) because of multiple locations, or
when a supplementary incomplete frame is used for cost reasons because it is cheaper to sample
than the complete frame, or when a direct sampling frame, even imperfect, is not available as in
network or indirect sampling. In the practice of survey sampling, the sampling frame is never
perfect and there is generally a small fraction of unidentifiable units in the target population that
are either missed or over-counted. To adjust for the resulting bias due to under- or over-coverage,
the method of post-stratification based on coverage bias models is used to adjust sampling weights.
However, when the domain of units subject to under- or over-coverage can be identified, it is
preferable and more effective to use the method of multiple frames (MF) to correct for coverage
bias without relying on models.

Thus, MF surveys are tools for dealing with imperfect frames. In an MF survey a collection of
two or more listings of units is used simultaneously for sample selection. Lists may be complete
or incomplete, and may be overlapping with unknown amounts of overlap. As mentioned earlier,
MF surveys are often suggested for improving coverage of surveys about difficult-to-sample
populations such as elusive and hidden populations as well as rare populations for which a
single frame might even be non-existent (see Kalton and Anderson (1986) for a good review).
For instance Iacan and Dennis described a survey of the homeless population in which eligible
individuals were selected from 1) homeless shelters; 2) soup kitchens and 3) street locations,
resulting in a three-frame sampling design (Iacan et al., 1993). Sampling individuals at locations
corresponds to an MF setup and has been applied in European migration studies (Eurostat, 2000).

MF surveys can be cost effective even if a complete frame exists. For instance, in an agricultural
survey, an area frame of the farms under study can be used. However area frames are usually
expensive to sample because of travel costs and in-person interviews for data collection. Suppose
that an incomplete list of farms located in the same area is available from an independent source;
for example, a list of (email) addresses of certified organic farms. This list would be incomplete
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and overlapping with the area frame - in fact, nested within the area frame but would be cheaper
to sample. It follows that an efficient sampling design could comprise two samples, one from each
of the two available frames, by under-sampling the costly complete frame and over-sampling the
cheaper incomplete one. Such a motivation for reducing cost for a given precision level was the
starting point in the justification of multiple frame (MF) surveys when they were first introduced in
the sixties (Hartley, 1962, 1974). MF surveys could also offer higher precision than conventional
single frame surveys. For instance, in surveying characteristics of complex populations, modular
sampling frames can help to better capture differences between subpopulations or domains as
in stratified sampling designs except that domains may not be disjoint. In addition, MF surveys
offer a more flexible strategy than conventional single frame surveys. It allows for different
sampling designs for different frames as well as different modes of data collection; for instance,
face-to-face interviews in one frame and email-questionnaires in another, with the goal of a
better control on survey costs, coverage, response rates, and ultimately the estimation accuracy.
In contemporary applications, the potential of an MF setup appears even more promising and
appealing. For example, in a web survey, both the population non-coverage and the possible
bias due to self-selection might be reduced by using multiple web sites simultaneously for data
collection, each targeting different segments of the study population. Kwok et al. (2009) proposed
the use of multiple frame estimators for cross-population comparisons in a large data context.

Despite several advantages of MF surveys mentioned above, there are significant challenges in
efficient estimation of population parameters of interest. In fact, the possible overlap among the
frames at the selection stage leads to multiple opportunities of selection of the same unit in the
final sample (although duplications may or may not occur in the sample) and hence the need to
deal with multiplicity of selected units and their possible duplications at the estimation stage. In
some special cases, the multiplicity problem can be overcome by removing the overlap among
frames; i.e., de-duplicating the frames if it can be identified in advance at the design stage before
the sample selection (Gonzales et al., 1996) or after the sample selection at the data collection
stage by screening out the respondents if they had a chance of being selected in another sampling
frame (Bankier, 1986). However, screening operations can be resource-consuming, error-prone,
and essentially amount to missed opportunity to collect data from a willing participant. We
therefore consider the general problem of MF estimation where each frame sample may contribute
observations to applicable overlap domains, and although data from units are collected only once
even if they are multiply selected, the data in the combined sample may not be de-duplicated.
Research on MF estimation has been active since the seminal papers of Hartley, and several MF
estimators have appeared in the literature, each derived under a somewhat different approach to
estimation. This lack of a unified principled approach to MF estimation has not helped in making
it popular among practitioners. Moreover, the natural complexity of the multiple frame estimation
framework leads to difficulty in a simple interpretation and implementation of MF estimators
including variance estimation without the availability of a standard software. This may be the
main reason for limited use of MF designs despite its practical appeal.

The purpose of this paper is to provide a simplified and unified review of available MF
estimation methods. This is accomplished by using the multiplicity approach to MF estimation as
proposed in Singh and Mecatti (2009, 2011). The paper is organized as follows. In section 2, we
present a simplified notation applicable to the general MF setup. Section 3 considers an appraisal
of the concept of multiplicity to illustrate the relation between MF surveys and other techniques
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for dealing with imperfect frames such as Network Sampling and Indirect Sampling. In section
4, we illustrate how the multiplicity-approach offers a simple and direct way to generalize the
familiar Horvitz-Thompson (HT) estimator to MF surveys. The class of HT-type MF estimators
(termed GMHT, generalized multiplicity-adjusted HT estimators) is reviewed in section 5. It
is observed that the GMHT class of Singh and Mecatti can encompass all unbiased or nearly
unbiased MF estimators proposed in the literature under different approaches to MF estimation.
Variance estimation is discussed in section 6. Finally, section 7 outlines future research directions
with concluding remarks.

2. From Dual Frames to Multiple Frames: a simplified notation

For a good introductory account of the special case of two or dual frame (DF) surveys, see the
review paper by Lohr (2009). The primary focus of the present paper is the general MF case. For
a long time since Hartley first introduced the subject in the sixties, the literature has essentially
offered estimation strategies for the DF case, usually alluding only in general terms to a possible
extension to the MF case. It is speculated that the main reason for this is the lack of an easily
understandable and generalizable notation for the MF setup as the traditional DF notation quickly
becomes unwieldy for three or more frames as shown in Figure 1.

a ab b

A

B

B≡ ab

a

A

b = /0

a

b

c

abc
ab

ac

bc

A

C

B

Figure 1: Two possible 2-frame survey cases and the general case of a 3-frame survey

The estimation theory for both DF and MF surveys has traditionally treated the problem of
overlapping frames and possibly data duplication in the sample by partitioning the union of all
frames into disjoint subsets (termed domains) as shown in Figure 1. The number of such domains
increases exponentially with the number of frames involved in the survey. Figure 1 depicts the
two possible scenarios of a DF survey as well as a general 3-frame case, using the traditional
notation of capital letters to denote the frames and a combination of lowercase letters to denote
the domains formed by intersecting frames. For instance, in the simplest DF case on the left side
of Figure 1, domain a represents the set of units included in frame A only, domain b is the set of
units included in frame B only and domain ab is the overlap domain, i.e. the set of doubly-counted
units, included both in A and B .

A recent paper of Lohr and Rao (2006) is the first one to provide a general MF notation allowing
for explicit formulae in a closed form for MF estimation based on domain-classifications. However
their notation does not provide a straightforward generalization of the familiar DF notation as
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a ab b

A BFrames

a(A) b(B)ab(A) ab(B)Domains

Figure 2: Partitioning of 2-Frame sample units into 4 frame-specific not necessarily disjoint
domains

it relies on index sets leading to fairly complex matrix structure that can be difficult to interpret
and implement. Moreover, as a consequence of the complex analytic form of the estimators, the
analytical form of variance estimators also becomes quite complex.

We now propose a simplified notation applicable to the general MF estimation problem which
is a natural generalization of the familiar DF notation.

In MF surveys, samples are generally selected independently from each frame. For every
selected unit in each frame-specific sample, information about the membership in any of the other
frames is typically collected besides data about the study variable(s). Assuming this information
is both available and reliable, it allows for a classification of each frame-specific sample data into
disjoint domains although domains may overlap across samples. This domain classification is a
useful device for treating overlap domains without the need for de-duplication of sample data
from common domains. In Figure 2 the domain-classification of sample data is sketched in the
simplest DF case under the familiar DF notation: the two independent frame-specific samples,
one from frame A and the other from frame B, generate four frame-specific domain samples, a(A)
and ab(A) from frame A; b(B) and ab(B) from frame B.

Figure 3 illustrates a step-by-step generalization of this familiar DF notation first to a 3-frame
setup (also compare with Figure 1) and then to an arbitrary number Q≥ 2 of frames.

As per Figure 3, we will use the following simplified notation. Let U1 · · ·Uq · · ·UQ denote
the collection of Q ≥ 2 frames available for the survey. Assuming that the frame-membership
information is correctly collected, the sample data from the frame Uq can be classified into
a number Dq of disjoint domains U1(q) · · ·Ud(q) · · ·UDq(q). Notice that in the special case of all
domains being non-empty, Dq = 2Q−1 is constant for each frame q = 1 · · ·Q . For example for the
3-frame setup in the right side of Figure 1 , we have Dq = 4 non-empty domains for every frame
Uq, q = 1,2,3 as also listed in the central panel of Figure 3.

It is seen that with the help of above notation along with the multiplicity approach as discussed
in the next section, it is possible to develop a simplified and unified MF estimation theory
encompassing the main methods in the literature (Sections 4 and 5) as proposed by Singh and
Mecatti (2009, 2011). This simplification also allows for a closed form HT-type expression of
variance estimators as shown in Section 6.
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frames→

domains→

2 frames (DF)
A B

a(A) b(B)
ab(A) ab(B)

3-frames
A B C

a(A) b(B) c(C)
ab(A) ab(B) ac(C)
ac(A) bc(B) bc(C)

abc(A) abc(B) abc(C)

Q-frames (MF)
Uq q = 1 . . .Q

U1(q)
...

Ud(q) d = 1 . . .Dq
...

UDq(q)

Figure 3: Partitioning of multi-frame samples into frame-specific domains

3. Multiplicity as a unifying estimation strategy for Network sampling, Indirect sampling,
and Multiple Frame surveys

The concept of multiplicity was first used by Birnbaum and Sirken (1965) in introducing the
Network sampling as an estimation strategy for surveying rare or elusive populations. Network
sampling, also known as Multiplicity or Snowball sampling, is useful, for instance, in estimating
the prevalence of a rare disease where a single frame representing the target population is typically
not available. Instead, a household list that may be easily available, can be used for selecting the
sample. For every selected household, all the occupants are interviewed and also asked to report
about other individuals related to them in some manner under a specified linkage rule such as
the sibling relationship. In Figure 4, a sketch of the sampling situation described above is given.
Households present in the list or the sampling frame (different from the target frame) act as a
selection device and are linked to the target units by the specified linkage rule. Selection units
and target units may have no relation, or may be related according to a linkage pattern which
can be one-to-one (units could be identical in particular) or one-to-many or many-to-one. When
a household is selected, all units in the network of linked target units, if any, are eligible for
data collection and included in the final sample. Consequently, target units linked with more
than one household, such as individuals with several siblings living in separate households, are
in a sense overcounted at the population level and therefore have a higher probability of being
multiply included in the final sample than individuals with few or no siblings. Multiplicity is
defined for every target unit as the number of selection units to which it is linked to, and then a
multiplicity-adjusted estimator can be defined. Generalizations to many-to-many linkage patterns
can also be made as, for instance, the case of multiple-listing of the same unit into the sampling
frame. See Sirken (2004) for an historical review of network sampling.

A more recent strategy termed Indirect sampling was introduced by Lavallée (2007) for dealing
with similar imperfect sampling frame situations in the context of social and economic surveys.
Due to lack of a sampling frame representing directly all the target population units, an indirect
sampling frame is used instead. A typical example occurs in implementing surveys on small
children when only a list of parent names is available as an indirect sampling frame. Since
parents may live in separate houses, a setup similar to Figure 4 emerges. The generalized weight
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Figure 4: Target Population and Sampling Frame setup for both network sampling and indirect
sampling
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Figure 5: From perfect to imperfect frame survey setup

share method is suggested to adjust for the conceptual multiple inclusions of target units at the
estimation stage (although the sample may have very few or no duplications) by providing a
multiplicity-adjusted sampling weight for every selected unit in the sample. Other forerunners of
the generalized weight share method are the variable weighting by Rao (1968) to handle a single
frame with an unknown amount of duplication, and weight-sharing by new selected units linked
longitudinally with units selected in earlier waves as introduced by Ernst (1989).

We now observe that both network and indirect sampling frameworks essentially refer to the
same conceptual layout exemplified in Figure 4 which can also be deemed to be applicable to the
MF framework. This is explained in Figure 5. The left side of Figure 5 illustrates the conventional
sampling framework based on a conceptual perfect single-frame of labelled population units. The
collection of labels (k = 1 · · ·N) then identifies the target population U of size N and at the same
time defines a perfect one-to-one linkage rule between each target unit k and the observable value
yk of the study variable. In an imperfect frame situation, the one-to-one linkage rule is no longer
present so that a sampling device is needed for selection purposes, as displayed in the right side
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0 otherwise

...
N
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Figure 6a: Sampling Device and Linkage Pattern Matrix in both Network and Indirect sampling

of Figure 5. The sampling device may be a collection of selection units linked in a well-defined
manner to target units as in network sampling or as in indirect sampling. In both these cases,
the sampling device identifies target units with a set of selection units ( j = 1 · · ·M). When the
sampling device is a collection of Q≥ 2 sampling frames, possibly incomplete and overlapping
as shown in Figure 1, we have an MF sampling framework.

The linkage pattern between the target population and the sampling device drives the actual
data collected for target units. The nature of linkage may vary with the sampling design: it is
generally one-to-many in network sampling; it can be many-to-many for indirect sampling in
order to allow some sort of clustering within the sampling device; and it is one-to-one within
each frame and many-to-one between frames in MF surveys. Considering first both network and
indirect sampling designs, regardless of the complexity of the linkage pattern, it is completely
described by an N×M linkage matrix whose entries are non-random indicators 1k↔ j taking
values of 1 if the population unit k is linked to the selection unit j and 0 otherwise (see Figure 6a).

Now consider the multiplicity approach for estimation for network and indirect sampling
designs. Multiplicity, as first introduced by Birnbaum and Sirken (1965), is defined for every
population unit as the sum over the rows of the linkage matrix in Figure 6a, namely mk =

∑
M
j=11k↔ j. Notice that for a conventional single frame survey, we would set mk = 1 for every

k ∈ U . In network sampling mk > 1 for at least one unit k ∈ U and 1k↔ j is termed as the
multiplicity counting rule. That is why network sampling is also known as multiplicity sampling.

The frame-specific linkage rule involved in an MF survey is the frame membership indicator
1k∈Uq ,q = 1 · · ·Q, taking values of 1 if population unit k is included in frame Uq and 0 otherwise,
leading to the frame-linkage matrix in Figure 6b where rows represent the unavailable single
frame units and columns display the Q≥ 2 available frames.

In an MF context unit multiplicity, i.e. the sum over each row, is then the number of frames in
which every unit belongs to

mk =
Q

∑
q=1

1k∈Uq (1)

while the sum over the columns gives the frame size Nq = ∑
N
k=11k∈Uq . It follows that ∑

Q
q=1 Nq ≥N

in the general case of overlapping frames.
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k ∈
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k 1k∈Uq

...
N

Figure 6b: Frame membership indicator as linkage rule for a MF survey

Finally, disjoint domains are formed by counting only once all identical rows; i.e. the collection
of population units sharing the very same array of frame-membership indicators (compare Figures
3 and 6b). Consequently, all units included in the same domain share the same multiplicity, thus
multiplicity can be defined either as a unit characteristic, as in definition (1), or also as a domain
characteristic; i. e., the number of frames intersecting with a given domain. In Figure 7, a simple
example is illustrated for a population of size N = 10 consisting of 3 overlapping frames. As
mentioned in Section 1, domains play a major role in the development of the MF estimation
theory in that the domain classification of sample data is used to handle the overlapping frame
issue arising in estimation with MF surveys. The target population and sampling frame linkage
setup described above, besides providing a unified framework of three scenarios for dealing with
imperfect frames (MF, Network and Indirect sampling), allows for a multiplicity approach to all
three scenarios.

Population units

k ∈U

N = 10

1
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9 3

1

5 10

4 7
8

6

2

U1

U3

U2

3-frame setup

Uq,q = 1 . . .Q

Q = 3

Figure 7 : Example of the domain classification in a 3-frame setup (1/2)
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→

Linkage Matrix 1k∈Uq

k
Uq U1 U2 U3 mk

1 0 1 0 1
2 0 1 1 2
3 1 0 0 1
4 1 1 1 3
5 0 0 1 1
6 1 0 1 2
7 1 1 1 3
8 1 1 0 2
9 1 0 0 1

10 0 0 1 1
Frame

size 6 5 6
Nq

→

2Q−1 = 7 Population Domain
frame membership units sharing multiplicity

arrays the same array md
(Domain d)

100 {3,9} 1
010 {1} 1
001 {5,10} 1
110 {8} 2
101 {6} 2
011 {2} 2
111 {4,7} 3

→

Frame-specific Domain classification:
each frame Uq consists of Dq = 4 domains Ud(q)

d = 1 . . .Dq

Ud(q)

Uq U1 U2 U3

U1(1) = {3,9} U2(1) =U1(2) U1(3) =U3(1)
U2(1) = {8} U2(2) = {1} U2(3) =U3(2)
U3(1) = {6} U3(2) = {2} U3(3) = {5,10}

U4(1) = {4,7} U4(2) =U4(1) U4(3) =U4(2) =U4(1)

Figure 7 : Example of the domain classification in a 3-frame setup (2/2)

4. Multiplicity Approach for Generalizing HT Estimation to Multiple Frame Surveys

In an MF survey, Q frame-samples {sq} are independently selected under possibly different
designs. At the estimation stage, the collection of data from the Q samples is used to produce an
estimate of the population parameter where the target population is represented by the union of all
frames. As a first step toward a simplified and unified approach to MF estimation, we consider a
broad classification of MF estimators available in the literature according to two basic approaches.
One approach relies on first concatenating samples from all frames into a single combined sample
with suitable weights and then to directly compute estimates of population parameters. In the
other approach, first separate estimates of each domain are computed by using each sample sd(q)
falling in the domain Ud(q). Domain estimates are then aggregated over all the domains within and
between frames (i.e., ∑q ∑d) ) to obtain an estimate of the population parameter. This is somewhat
analogous to a stratified estimator by treating the domain classification as a virtual partition of
the target population in each frame except that domain estimates from the same frame are not
independent.

The two approaches will be referred to respectively as combined frame approach (COMB)
and separate frame approach (SEP) as in Singh and Wu (2003), Singh and Mecatti (2011) and
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Singh and Mecatti (2014). A COMB estimator is also sometimes referred to as a single frame
estimator (see for instance Lohr, 2009). However, we prefer the term combined frame (COMB)
to avoid ambiguity with the traditional single frame estimators including a special single frame
estimation approach to MF in which duplicate selected units in the combined sample are first
eliminated, and then for all sampled units from overlapping frames, revised inclusion probabilities
are computed to adjust for the possibility of being selected from several frames as input to HT
estimation (Bankier, 1986).

In Singh and Mecatti (2011), an additional practical classification is proposed, based on the
amount of frame-level information available for each sampled unit at the estimation stage, termed
basic, partial, or full. The frame-level information is in addition to the usual sample data collected
from respondents. Specifically, basic frame level information refers to the case if for every sampled
unit k ∈ sq selected from a given frame Uq

1. the unit multiplicity mk is collected while the frame identification 1k∈Uq′ may not be
available for all the other frames q′ 6= q = 1 · · ·Q;

2. the inclusion probability is known only for selection in Uq while it may not be available for
all the other frames q′ 6= q.

The case of partial frame level information refers to the situation when we have basic information
plus

3. identification of all frame memberships from all the frames the sampled unit could have
come from, i.e. 1k∈Uq is given for all q = 1 · · ·Q.

Finally, the case of full frame level information refers to the situation when we have partial
information plus

4. the inclusion probabilities for every sampled unit k ∈ sq are available for all frames q =
1 · · ·Q, namely in addition to Uq in which k was actually sampled.

In other words the basic frame level information is essentially restricted to the frame in which
the unit was actually sampled while very limited information is used from other frames which
might include the same unit. This happens, for instance, when surveying sensitive characteristics
(such as personal habits) due to confidentiality concerns. It might also arise when using stigmatized
frames such as lists of mental patients or of convicted people. Units might be sensitive to disclosing
information about the other frame membership and refuse to answer when asked about "which
other frame they belong to" besides the one in which they are being interviewed. In these cases,
unit multiplicity, which refers to the number of frames a unit belongs, might be easier to collect
using a more discreet "how many frames" question. Notice that the basic information does not
allow for classifying sample data into domain-samples as exemplified in Figure 7, and therefore
all the available MF estimators become inapplicable except for the simple multiplicity-adjusted
estimator (Mecatti, 2007). By contrast, both partial and full frame level information imply having
more information about all the Q frames involved in the survey, and both allow classifying the
frame-specific sample data into domain-samples.

A SEP estimator requires basic or partial frame level information (i.e., not full information) for
each unit. Most of the available MF estimators are in the SEP class. In particular, members of
this class include the optimal DF Hartley estimator (Hartley, 1962, 1974) and its improvements
for simple random sampling designs using maximum likelihood arguments by Lund (1968),
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Fuller and Burmeister (1972) and Skinner (1991); DF pseudo maximum likelihood estimator
(PML) of Skinner and Rao (1996), generalizations to MF by Lohr and Rao (2006) and the simple
multiplicity estimator of Mecatti (2007); and modified regression estimators of Singh and Wu
(1996, 2003). On the other hand, a COMB estimator requires full frame level information and this
class encompasses methods by Kalton and Anderson (1986) and Bankier (1986).

From the forms of SEP and COMB estimators, it was observed by Singh and Mecatti (2009,
2011) that for MF estimators having the form of an expansion or calibration estimator, a unified and
simplified approach to MF estimation for the problem of combining data from the Q independent
frame-samples sq can be developed by using a weighting system adjusted for multiplicity. This will
be explained in the context of estimating total parameters, starting below with the generalization to
MF of the familiar single frame HT estimator by using unit multiplicity (1), and then proceeding
in Section 5 to illustrate both SEP and COMB estimators as generalized multiplicity-adjusted HT
estimators.

In a conventional single-frame survey, for estimating the population total Y = ∑k∈U yk, the
familiar Horvitz-Thompson estimator is computed by using data from a single sample s as

ŶHT = ∑
k∈s

ykπ
−1
k (2)

with initial design weights π
−1
k obtained as inverse of the (first order) inclusion probabilities. In

an MF survey the target population is covered by Q ≥ 2 frames so that the population total is
given by

Y = ∑
k∈
⋃Q

q=1 Uq

yk (3)

where .
In the MF case, when frames can be incomplete and overlapping, the total parameter using unit

multiplicity can be expressed as

Y =
Q

∑
q=1

∑
k∈Uq

ykm−1
k (4)

A simple design unbiased multiplicity estimator for (4) follows in a straightforward manner
and is given by (see Mecatti, 2007; Lohr, 2011)

ŶSM =
Q

∑
q=1

∑
k∈sq

ykm−1
k π

−1
k (5)

Expression (5) shows how the (inverse of) unit multiplicity is used to adjust the design weight to
avoid bias due to the possibility of inclusion from more than one frame and of possible duplication
in an MF survey. In a conventional single frame survey, mk = 1 for all k = 1 · · ·N and equation (5)
reduces to the HT estimator (2). The case of Q non-overlapping frames is equivalent to a target
population partitioned into Q strata. In this case, every population unit has the multiplicity of 1
and equation (5) reduces to the usual stratified HT estimator.

Unit multiplicity is a natural choice for adjusting HT estimation to MF surveys. However, it
is not the only way to obtain unbiased estimates. By defining a general multiplicity-adjustment
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factor, a generalized multiplicity-adjusted HT class of estimators for MF surveys is presented in
the next section.

5. The generalized multiplicity-adjusted HT class as a simplified and unified approach to
multiple frame estimation

In Singh and Mecatti (2009, 2011) a generalized HT methodology for MF estimation is given
under a general definition of multiplicity adjustment. Let αk(q) be the multiplicity adjustment
factor for every unit k in a given frame Uq with ∑q αk(q) = 1. Generally αk(q) ∈ [0,1] although
it is not necessary. From equation (5), a Generalized Multiplicity-adjusted Horvitz-Thompson
(GMHT) class of MF estimators is defined as

ŶGMHT =
Q

∑
q=1

∑
k∈sq

ykαk(q)π
−1
k(q) (6)

where the factor αk(q) ensures that yk is counted only once even if unit k is present in more than
one frame. Notice that a GMHT estimator is design-unbiased by construction. Moreover equation
(6) shows that any GMHT estimator is a linear combination of independent HT-type estimators;
therefore conventional HT-type variance estimator can be easily obtained in a closed form as
shown in the next section.

Different GMHT estimators are derived by different choices of the multiplicity adjustment
α-factor in (6). The multiplicity-adjusted MF estimator as given in (5) is the simplest GMHT
estimator with the basic choice of αk(q) = m−1

k ; i.e., a constant adjustment regardless of the
frame Uq that contains the unit k. The GMHT class includes all the known design-unbiased or
approximately unbiased MF estimators, either COMB or SEP, whether requiring basic, partial,
or full information according to the classification illustrated in the previous section. Singh and
Mecatti (2009, 2011) introduced the GMHT class to deal with the case of mixed frame-level
information when some units had only basic while others had full information, and also considered
variations of the COMB approach. The COMB approach involves unit/frame-specific multiplicity
adjustments, or α-factors. For instance, it can be easily shown that the Kalton-Anderson estimator
(Kalton and Anderson, 1986) is a GMHT estimator. Consider, for simplicity, a DF survey with
equal probability selection such as simple random sampling from both frames. Kalton and
Anderson proposed to weight data from the overlap domain by inclusion probabilities from both
frames as follows

ŶKA = Ŷa(A)+
πA

πA +πB
Ŷab(A)+

πB

πA +πB
Ŷab(B)+ Ŷb(B) (7)

where, under equal probability designs, πk(A) = πA and πk(B) = πB

Ŷa(A) = ∑k∈sA
ykπ
−1
A 1k∈a is the HT estimator of the total of domain a;

Ŷab(A) = ∑k∈sA
ykπ
−1
A 1k∈ab and Ŷab(B) = ∑k∈sB ykπ

−1
B 1k∈ab are both HT estimators of the

same overlap domain total; and

Journal de la Société Française de Statistique, Vol. 155 No. 4 51-69
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



64 Mecatti and Singh

Ŷb(B) is defined accordingly (also refer to Figures 1 and 2).

Thus the Kalton-Anderson estimator adjusts data from the overlap domain by giving higher
weight to the estimator from the frame with higher inclusion probability. Notice that for non-
overlap domains a and b, the unit multiplicity adjustment mk = 1 is used.

With little algebra, equation (7) can be re-expressed as a sum of contributions from the two
frame-samples as give below

ŶKA = ∑
k∈sA

ykπ
−1
A

[
1k∈a +πA (πA +πB)

−1
1k∈ab

]
+ ∑

k∈sB

ykπ
−1
B

[
1k∈b +πB (πA +πB)

−1
1k∈ab

]
(8)

which can easily be generalized to MF with Q ≥ 2 frames under a general sampling design in
each frame; i.e., for unequal probability designs with inclusion probabilities πk(A) and πk(B). Thus,
using the simplified notation introduced in Section 2, equation (8) generalizes to (refer to Figure
3)

ŶKA =
Q

∑
q=1

∑
k∈sq

ykπ
−1
k(q)

 Dq

∑
d=1

πk(q)

1k∈Ud(q)

(
Q

∑
q′=1

πk(q′)1k∈Ud(q′)

)−1
 (9)

Both equations (8) and (9) show that for the estimator ŶKA, the following needs to be computed

i. a complete identification of frame membership for every sampled units k in order to compute
1k∈Ud(q) and 1k∈Ud(q′) which track across frames the domains that include unit k. and

ii. a complete knowledge of inclusion probability for every frame in which unit k could have
been selected in order to compute the sum across frames ∑

Q
q′=1 πk(q′)1k∈Ud(q′) .

It follows that ŶKA is applicable if full frame-level information is available as defined in Section
4. Also it is readily seen that ŶKA is a GMHT estimator as defined in (6) with the following choice
of the multiplicity-adjustment α-factor

α
KA
k(q) = πk(q)

Dq

∑
d=1

1k∈Ud(q)

(
Q

∑
q′=1

πk(q′)1k∈Ud(q′)

)−1
 (10)

Notice that αKA
k(q) = 1 for unit k with multiplicity mk = 1; i.e., for unit included in one and only

one frame Uq. Furthermore ∑
Q
q=1 αKA

k(q) = 1 for every population unit k.

GMHT estimation also applies to the SEP approach to MF estimation. A SEP estimator re-
quires partial frame level information, and its computation basically consists of the following steps:

i. Consider separately data from each frame-sample sq after classifying into domain-samples
sd(q),d = 1 · · ·Dq;
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ii. Compute estimates of domain totals and combine multiple estimates as the case may be;
and

iii. Aggregate all domain estimates to produce an overall estimate of the population total.

It is observed that a domain-specific (and not unit-specific) multiplicity-adjustment is needed in
a SEP estimator. The SEP estimator belongs to the GMHT class (6) with multiplicity-adjustment
α-factor given by

αk(q) =
Dq

∑
d=1

αd(q)1k∈Ud(q) (11)

which is common for all units in the same domain Ud(q) such that for every population unit k

Q

∑
q=1

Dq

∑
d=1

αd(q)1k∈Ud(q) =
Q

∑
q=1

αk(q) = 1 (12)

Expression (11) is applicable, for instance, to the Hartley’s optimal unbiased estimator (Hartley,
1962, 1974) for DF under general designs for both frames. That is,

ŶH = Ŷa(A)+αŶab(A)+(1−α)Ŷab(B)+ Ŷb(B) (13)

with α chosen to minimize the variance V
(
ŶH
)

and is given by

α
H =

V
(
Ŷab(B)

)
+Cov

(
Ŷb(B),Ŷab(B)

)
−Cov

(
Ŷa(A),Ŷab(A)

)
V
(
Ŷab(A)

)
+V

(
Ŷab(B)

) (14)

Estimator (13) can be reexpressed as a GMHT estimator analogous to the Kalton-Anderson
estimator (compare equations (7) and ( 8))

ŶH = ∑
k∈sA

ykπ
−1
A

(
1k∈a +α

H
1k∈ab

)
+ ∑

k∈sB

ykπ
−1
B

(
1k∈b +(1−α

H)1k∈ab
)

(15)

and can be generalized to Q≥ 2 frames as

ŶH =
Q

∑
q=1

[
∑

k∈sq

ykπ
−1
k(q)

(
Dq

∑
d=1

α
H
d(q)1k∈Ud(q)

)]
=

Q

∑
q=1

∑
k∈sq

ykπ
−1
k(q)α

H
k(q) (16)

Thus Hartley’s MF estimator is GMHT, with multiplicity-adjustment α-factor given by (11)
where optimal αH

d(q) minimizes V
(
ŶH
)

under the constraint (12). In practice, it is only approx-
imately unbiased and optimal because αH

d(q) is estimated from the sample; see also simulation
results (Lohr and Rao, 2006; Mecatti, 2007). Using regression on zero-functions (Fuller and
Burmeister, 1972; Singh and Wu, 1996), a simpler expression for the optimal αH

d(q) for MF can be
obtained. First we recall, from the comment following equation (1), that each and every unit from
the same domain shares the same multiplicity, so that the unit multiplicity mk, for all k ∈Ud(q),
also defines the multiplicity of the domain Ud(q) 3 k. Moreover, domain multiplicity defines
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a domain characteristic regardless of which frame Uq contains that domain. When referred to
domain, multiplicity equals how many frames intersect with that domain and can be denoted as
md , d = 1 · · ·D, where D ≤ 2Q− 1 is the number of non-empty domains generated by the Q
frames used in the survey.

Second we notice that md estimators Ŷd(q) are available for the same domain total, one from
each frame-sample sq intersecting with the domain.

Finally using the equivalence between domain multiplicity md and unit multiplicity mk common
to every unit k included in that domain, we observe that the simple multiplicity-adjusted estimator,
based on mk as defined in (5), can also be re-expressed as a linear combination of HT domain
total estimators adjusted by domain multiplicity

ŶSM =
D

∑
d=1

md

∑
q=1

m−1
d Ŷ HT

d(q) (17)

It follows that the Hartley’s (SEP) estimator, as defined in (16), can also be obtained by
combining the md independent HT estimators available for the same domain total except for
domains with md = 1. It can be expressed as a regression estimator, by regressing ŶSM on predictor
zero functions formed by pairs of estimators for the same domain from different frames (see
Fuller and Burmeister, 1972, Singh and Mecatti, 2014 and Singh and Wu, 2003)

ŶH = ŶSM−
D

∑
d=1

[
md

∑
q=1

md

∑
q′>q=1

βd(qq′)

(
Ŷ HT

d(q)− Ŷ HT
d(q′)

)]
(18)

where Ŷ HT
d(q) = ∑k∈sd(q)

ykπ
−1
k(q) is the HT estimator of the total of domain Ud(q) computed with data

from frame-sample sq classified into domain-samples sd(q) = sq
⋂

Ud(q), d = 1 · · ·Dq.
The optimal solution for the regression coefficient βd(qq′) in equation (18) then follows from

optimal regression of ŶSM on zero functions and can be readily computed by standard software
for linear regression analysis. Let ϕd(qq′) = Ŷ HT

d(q)− Ŷ HT
d(q′). Notice that md (md−1)/2 =

(md
2

)
pre-

dictors ϕd(qq′) are available so that a predictor vector ϕ of dimension H = ∑
D
d=1 md (md−1)/2 =

∑
D
d=1
(md

2

)
can be defined. Let Vϕϕ define the Var-Cov matrix of ϕ and Cov

(
ϕ,ŶSM

)
be the

(H×1) vector of covariances between every predictor in ϕ and ŶSM. We have

Cov
(
ϕd(qq′),ŶSM

)
=

D

∑
d′=1

md′

∑
q′′=1

m−1
d′

[
Cov

(
Ŷ HT

d(q),Ŷ
HT
d′(q′′)

)
−Cov

(
Ŷ HT

d(q′),Ŷ
HT
d′(q′′)

)]
(19)

for all q′′ = 1 · · ·md , q′ 6= q, and the (h,h′) element of Vϕϕ , for h 6= h′ = 1 · · ·H, h = d(qq′), h′ =
d(q′′q′′′), is given by

Cov(ϕh,ϕh′) =Cov
(

Ŷ HT
d(q)− Ŷ HT

d(q′),Ŷ
HT
d(q′′)− Ŷ HT

d(q′′′)

)
=Cov

(
Ŷ HT

d(q),Ŷ
HT
d(q′′)

)
−Cov

(
Ŷ HT

d(q),Ŷ
HT
d(q′′′)

)
−Cov

(
Ŷ HT

d(q′),Ŷ
HT
d(q′′)

)
+Cov

(
Ŷ HT

d(q′),Ŷ
HT
d(q′′′)

)
. (20)
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Similarly, covariance terms for all the other scenarios such as

h = d(qq′), h′ = d(qq′′); h = d(qq′), h′ = d′(qq′); and h = d(qq′), h′ = d′(q′′q′′′)

can be obtained. Thus an explicit closed-form expression for the (H×1) vector β of optimal
regression coefficients βd(qq′) in (18) is given by

β =V−1
ϕϕ Cov

(
ϕ,ŶSM

)
(21)

Now observe that the estimator (18) can also be expressed as

ŶH =
D

∑
d=1

md

∑
q=1

(
m−1

d −
md

∑
q′ 6=q=1

βd(qq′)

)
Ŷ HT

d(q) =
Q

∑
q=1

Dq

∑
d=1

(
m−1

d −
md

∑
q′ 6=q=1

βd(qq′)

)
Ŷ HT

d(q) (22)

where βd(qq′) =−βd(q′q), so that

α
H
d(q) =

{
1 if md = 1
m−1

d −∑
md
q′ 6=q=1 βd(qq′) if md ≥ 2 (23)

Notice that equation (23) generalizes the DF solution given in (14) and the unit sum con-
straint (12) is satisfied because, for every d, ∑

md
q=1 m−1

d = 1 and ∑
md
q=1 ∑

md
q′ 6=q=1 βd(qq′) = 0. For SEP

estimators involving more general regression, see the comment in Section 7

6. Multiplicity-adjusted variance estimation of Multiple Frame estimators

Unbiased or approximately unbiased multiplicity-adjusted estimators included in the GMHT class
(6) are in fact linear combinations of Q independent HT estimators - one from each frame-sample
sq. Thus the estimator’s variance as well as its unbiased estimator follow directly from HT-type
estimation as explained in Singh and Mecatti (2011). In other words, the simplification induced by
adopting the multipicity approach, besides allowing for generalizing the customary HT estimation
to MF surveys, also allows for standard variance estimation in a closed analytical form, which
may involve linearization. The exact variance of any GMHT estimator in the well known HT form
is given by

V
(
ŶGMHT

)
=

Q

∑
q=1

[
∑

k∈Uq

y2
kα

2
k(q)

1−πk(q)

πk(q)
+ ∑

k 6=k′
∑
∈Uq

ykαk(q) yk′αk′(q)

πk(q)πk′(q)

(
πkk′(q)−πk(q)πk′(q)

)]
(24)

and the Sen-Yates-Grundy (SYG) form of variance estimator for fixed sample size designs is
given by

v
(
ŶGMHT

)
=

1
2

Q

∑
q=1

∑
k 6=k′

∑
∈sq

πk(q)πk′(q)−πkk′(q)

πkk′(q)

(
ykαk(q)

πk(q)
−

yk′αk′(q)

πk′(q)

)2

(25)

For example, for Hartley (optimal) estimator ŶH , we first write the GMHT form (16), and then
use (25) to obtain its variance estimator analogous to usual HT estimators. Resampling methods
for variance estimation can also be easily applied by considering the variance of the contributions
from each frame separately as given by the GMHT form (6).
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7. Concluding remarks and future research directions

In this paper we considered the connection between MF sampling, Indirect sampling and Network
sampling and showed how all estimators can be expressed as a multiplicity-adjusted estimator.
MF estimators can be classified into two class, SEP and COMB. It was shown that the unbiased
MF estimators - such as the Kalton-Anderson COMB estimator (9) and the Hartley SEP estimator
with known αH (16) - can be expressed in a GMHT form introduced earlier by Singh and Mecatti
(2009, 2011). The GMHT class can be extended by relaxing the assumption of unbiasedness to
approximate unbiasedness. For example, as mentioned earlier for Hartley estimator, it is only
approximately umbiased and optimal because in practice αH is estimated from the same data.
Similarly, for regression calibration estimators, the weight wk(q)

(
= π

−1
k(q)

)
is adjusted by the

factor ak(q) where ak(q) = 1+Op(1/
√

n). By allowing wk(q)ak(q) instead of π
−1
k(q) in the GMHT

class, the resulting estimators will be approximately unbiased in general. However, this way the
new GMHT-reg class can subsume various regression-based MF estimators in the SEP class such
as Fuller-Burmeister optimal regression estimator (Fuller and Burmeister, 1972 — whenever it
can be expressed as a calibration estimator), pseudo-maximum estimator (PML) of Skinner and
Rao (1996) and Lohr and Rao (2006) under a working covariance for regression after Hájek-ratio
adjustment to random domain counts, and the modified regression estimators of Singh and Wu
(1996, 2003) which use different working covariance for regression to obtain a calibration form of
MF estimators. For the special case of simple random samples, the Fuller-Burmeister maximum
likelihood estimator (Fuller and Burmeister, 1972), which generalizes both Lund (1968) and
Hartley (1962, 1974) estimators, can also be expressed approximately in a GMHT-reg form.
Details of the above generalization of the GMHT class to include regression estimators for
MF surveys are considered in Singh and Mecatti (2014). They also considered a generalization
of Kalton-Anderson estimator via modified-regression to obtain a calibration form within the
COMB class. Finally, we note that a new interesting direction of development in MF estimation
corresponds to the use of pseudo-empirical likelihood by Wu and Rao (2006) and Rao and Wu
(2010) which takes a totally different approach and more research is needed to see how they can
address the types of regression problems GMHT-reg can handle.
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