250 research outputs found

    A GPU-based hyperbolic SVD algorithm

    Get PDF
    A one-sided Jacobi hyperbolic singular value decomposition (HSVD) algorithm, using a massively parallel graphics processing unit (GPU), is developed. The algorithm also serves as the final stage of solving a symmetric indefinite eigenvalue problem. Numerical testing demonstrates the gains in speed and accuracy over sequential and MPI-parallelized variants of similar Jacobi-type HSVD algorithms. Finally, possibilities of hybrid CPU--GPU parallelism are discussed.Comment: Accepted for publication in BIT Numerical Mathematic

    Remote Evaluation of Feedback and Decision-Making during Save the Children’s Covid-19 Response in Bangladesh

    Get PDF
    This research study evaluates the impact of the COVID-19 emergency on Save the Children’s use of feedback from adults and children in Bangladesh. It examines the impact of Covid-19 and the ways in which approaches to feedback inform Save the Children’s decision-making at a time of particular global challenge. The report’s findings are intended to serve as a useful, rapidly-realised tool for organisational learning and to support Save the Children as it continues to serve displaced populations in Bangladesh and globally

    Functional magnetic resonance imaging (fMRI) item analysis of empathy and theory of mind

    Get PDF
    In contrast to conventional functional magnetic resonance imaging (fMRI) analysis across participants, item analysis allows generalizing the observed neural response patterns from a specific stimulus set to the entire population of stimuli. In the present study, we perform an item analysis on an fMRI paradigm (EmpaToM) that measures the neural correlates of empathy and Theory of Mind (ToM). The task includes a large stimulus set (240 emotional vs. neutral videos to probe empathic responding and 240 ToM or factual reasoning questions to probe ToM), which we tested in two large participant samples (N = 178, N = 130). Both, the empathy-related network comprising anterior insula, anterior cingulate/dorsomedial prefrontal cortex, inferior frontal gyrus, and dorsal temporoparietal junction/supramarginal gyrus (TPJ) and the ToM related network including ventral TPJ, superior temporal gyrus, temporal poles, and anterior and posterior midline regions, were observed across participants and items. Regression analyses confirmed that these activations are predicted by the empathy or ToM condition of the stimuli, but not by low-level features such as video length, number of words, syllables or syntactic complexity. The item analysis also allowed for the selection of the most effective items to create optimized stimulus sets that provide the most stable and reproducible results. Finally, reproducibility was shown in the replication of all analyses in the second participant sample. The data demonstrate (a) the generalizability of empathy and ToM related neural activity and (b) the reproducibility of the EmpaToM task and its applicability in intervention and clinical imaging studies. © 2020 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc

    First experience with single-source, dual-energy CCTA for monochromatic stent imaging

    Get PDF
    Aims Single-source, dual-energy coronary computed tomography angiography (CCTA) with monochromatic image reconstruction allows significant noise reduction. The aim of the study was to evaluate the impact of monochromatic CCTA image reconstruction on coronary stent imaging, as the latter is known to be affected by artefacts from highly attenuating strut material resulting in artificial luminal narrowing. Methods and results Twenty-one patients with 62 stents underwent invasive coronary angiography and single-source, dual-energy CCTA after stent implantation. Standard polychromatic images as well as eight monochromatic series (50, 60, 70, 80, 90, 100, 120, and 140 keV) were reconstructed for each CCTA. Signal and noise were measured within the stent lumen and in the aortic root. Mean in-stent luminal diameter was assessed in all CCTA reconstructions and compared with quantitative invasive coronary angiography (QCA). Luminal attenuation was higher in the stent than in the aortic root throughout all monochromatic reconstructions (P < 0.001). An increase in monochromatic energy was associated with a decrease in luminal attenuation values (P < 0.001). The mean in-stent luminal diameter underestimation by monochromatic CCTA compared with QCA was 90% at low monochromatic energy (50 keV) and improved to 37% at high monochromatic (140 keV) reconstruction while stent diameter was underestimated by 39% with standard CCTA. Conclusion Monochromatic CCTA can be used reliably in patients with coronary stents. However, reconstructions with energies below 80 keV are not recommended as the blooming artefacts are most pronounced at such low energies, resulting in up to 90% stent diameter underestimatio

    3D-printed facet-attached optical elements for beam shaping in optical phased arrays

    Get PDF
    We demonstrate an optical phased-array equipped with a 3D-printed facet-attached element for shaping and deflection of the emitted beam. The beam shaper combines freeform refractive surfaces with total-internal-reflection mirrors and is in-situ printed to edge-emitting waveguide facets using high-resolution multi-photon lithography, thereby ensuring precise alignment with respect to on-chip waveguide structures. In a proof-of-concept experiment, we achieve a grating-lobe free steering range of ±\pm30^{\circ} and a full-width-half-maximum beam divergence of approximately 2^{\circ}. The concept opens an attractive alternative to currently used grating structures and is applicable to a wide range of integration platforms

    3D-printed facet-attached optical elements for beam shaping in optical phased arrays

    Get PDF
    We demonstrate an optical phased-array equipped with a 3D-printed facet-attached element for shaping and deflection of the emitted beam. The beam shaper combines freeform refractive surfaces with total-internal-reflection mirrors and is in-situ printed to edge-emitting waveguide facets using high-resolution multi-photon lithography, thereby ensuring precise alignment with respect to on-chip waveguide structures. In a proof-of-concept experiment, we achieve a grating-lobe free steering range of ±\pm30^{\circ} and a full-width-half-maximum beam divergence of approximately 2^{\circ}. The concept opens an attractive alternative to currently used grating structures and is applicable to a wide range of integration platforms

    Board examination for anatomical pathology in Switzerland: two intense days to verify professional competence

    Get PDF
    About 15years ago, the Swiss Society of Pathology has developed and implemented a board examination in anatomical pathology. We describe herein the contents covered by this 2-day exam (autopsy pathology, cytology, histopathology, molecular pathology, and basic knowledge about mechanisms of disease) and its exact modalities, sketch a brief history of the exam, and finish with a concise discussion about the possible objectives and putative benefits weighed against the hardship that it imposes on the candidate

    Tribological system for cold sheet metal forming based on volatile lubricants and laser structured surfaces

    Get PDF
    AbschlussberichtA novel tribological system has been developed, in which volatile lubricants (carbon dioxide - CO2 or nitrogen- N2) are used as a substitute for mineral oil-based lubricants in deep drawing processes. This process enables the introduction of an intermediate medium under high pressure through flow-optimized, laser-drilled micro holes into the contact surfaces. This eliminates the need for subsequent, cost-intensive cleaning processes, as the volatile lubricants evaporate without leaving any residue during expansion to ambient pressure. The design of initial micro hole geometries was based on simulations of the flow behaviour of the lubricants passing through, which in turn were validated using pressure reactor tests. In addition, the wetting behaviour of CO2 on relevant surfaces (tool surface and sheet material surface) was investigated experimentally using the captive-bubble-method. Thus, the optimal design of the micro holes (diameter, hole geometry and number of micro holes) could be determined using flat strip drawing tests. The optimal micro hole geometry determined in this way is suited for the use of both CO2 and N2 as volatile lubricant. Furthermore, extensive investigations for the production of the required micro hole geometry by laser drilling were carried out. The fundamentals for drilling micro holes in steel with high aspect ratios could be developed using an ultrashort pulsed research laser with very high pulse energy. Further experiments were conducted using an ultrashort pulsed prototype laser of the kW-class specially developed to increase productivity when drilling a multitude of micro holes with higher average laser power. The novel tribological system has been characterised by means of strip drawing tests and stretch bending tests. For both, CO2 (liquid) and N2 (gaseous), relatively low friction values could be achieved compared to conventional lubricants. It could be shown that deep drawing with both CO2 and N2 as dry lubricants is possible. Here, usage of the volatile lubricants not only allows the replacement of mineral oil based lubricants, but even improves the tribological system with regard to frictional forces in sheet metal forming. The feasibility of the new tribological system has been proven by performing deep drawing tests of rectangular cups. These tests showed a significantly enlarged process window of the forming process, which emphasise the tremendous potential of this new tribological system.12816

    Insights into the Role of a Cardiomyopathy-Causing Genetic Variant in ACTN2

    Get PDF
    Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hyper-trophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocar-diography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Reso-lution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell cycle defects and mitochondrial dys-function. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteosomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteosomal system is activated; a mechanism which has been implicated in cardiomyopathies previously. In parallel, lack of functional al-pha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell cycle defects, the likely cause of death of the embryos. The defects also have wide-ranging morphological consequences
    corecore