822 research outputs found
Spatial distribution of sequential ventilation during mechanical ventilation of the uninjured lung: an argument for cyclical airway collapse and expansion
<p>Abstract</p> <p>Background</p> <p>Ventilator-induced lung injury (VILI) is a recognized complication of mechanical ventilation. Although the specific mechanism by which mechanical ventilation causes lung injury remains an active area of study, the application of positive end expiratory pressure (PEEP) reduces its severity. We have previously reported that VILI is spatially heterogeneous with the most severe injury in the dorsal-caudal lung. This regional injury heterogeneity was abolished by the application of PEEP = 8 cm H<sub>2</sub>O. We hypothesized that the spatial distribution of lung injury correlates with areas in which cyclical airway collapse and recruitment occurs.</p> <p>Methods</p> <p>To test this hypothesis, rabbits were mechanically ventilated in the supine posture, and regional ventilation distribution was measured under four conditions: tidal volumes (V<sub>T</sub>) of 6 and 12 ml/kg with PEEP levels of 0 and 8 cm H<sub>2</sub>O.</p> <p>Results</p> <p>We found that relative ventilation was sequentially redistributed towards dorsal-caudal lung with increasing tidal volume. This sequential ventilation redistribution was abolished with the addition of PEEP.</p> <p>Conclusions</p> <p>These results suggest that cyclical airway collapse and recruitment is regionally heterogeneous and spatially correlated with areas most susceptible to VILI.</p
Radiographic assessment of the skeletons of Dolly and other clones finds no abnormal osteoarthritis
Our recent report detailing the health status of cloned sheep concluded that the animals had aged normally. This is in stark contrast to reports on Dolly (first animal cloned from adult cells) whose diagnoses of osteoarthritis (OA) at 5½ years of age led to considerable scientific concern and media debate over the possibility of early-onset age-related diseases in cloned animals. Our study included four 8-year old ewes derived from the cell line that gave rise to Dolly, yet none of our aged sheep showed clinical signs of OA, and they had radiographic evidence of only mild or, in one case, moderate OA. Given that the only formal record of OA in Dolly is a brief mention of a single joint in a conference abstract, this led us to question whether the original concerns about Dolly’s OA were justified. As none of the original clinical or radiographic records were preserved, we undertook radiographic examination of the skeletons of Dolly and her contemporary clones. We report a prevalence and distribution of radiographic-OA similar to that observed in naturally conceived sheep, and our healthy aged cloned sheep. We conclude that the original concerns that cloning had caused early-onset OA in Dolly were unfounded
Cellular Models of Aggregation-Dependent Template-Directed Proteolysis to Characterize Tau Aggregation Inhibitors for Treatment of Alzheimer's Disease
Copyright © 2015, The American Society for Biochemistry and Molecular Biology. Acknowledgements-We thank Drs Timo Rager and Rolf Hilfiker (Solvias, Switzerland) for polymorph analyses.Peer reviewedPublisher PD
The Full SPECTRUM: Developing a Tripartite Partnership between Community, Government and Academia for Collaborative Social Policy Research
Problem: In Canadian society, public policies guide the development and administration of social services and systems, including the public education system, the justice system, family services, social housing and income support. However, because social services are often planned and implemented in a ‘siloed’ manner, coordination and collaboration across departments, sectors and organisations is sorely lacking. Data and resource constraints may prevent services being evaluated to ensure they meet the needs of the people for whom they are intended. When the needs of individuals are not addressed, the result is poor outcomes and wasted resources across multiple areas.Our Response: In 2018, we formed the SPECTRUM Partnership in response to a recognised need for collaborative cross-sector approaches to strengthening the policies that shape social services and systems in our country. The tripartite SPECTRUM partnership comprises representatives from community organisations, government and academia, and is an entity designed to conduct social policy research and evaluation, incorporating interdisciplinary perspectives and expertise from its members. Guided by community-driven research questions and building on existing data resources, SPECTRUM seeks to address specific knowledge gaps in social programs, services and systems. New research findings are then translated into viable public policy options, in alignment with government priorities, and presented to policy-makers for consideration.Implications: In this practice-based article, we describe the key steps we took to create the SPECTRUM partnership, build our collective capacity for research and evaluation, and transform our research findings into actionable evidence to support sound public policy. We outline four of SPECTRUM’s achievements to date in the hope that the lessons we learned during the development of the partnership may serve as a guide for others aiming to optimise public policy development in a collaborative evidence-based way
Deficiency of the two-pore-domain potassium channel TREK-1 promotes hyperoxia-induced lung injury
Copyright © 2014 by the Society of Critical Care Medicine and Lippincott Williams & Wilkins. Objectives: We previously reported the expression of the twoporedomain K+ channel TREK-1 in lung epithelial cells and proposed a role for this channel in the regulation of alveolar epithelial cytokine secretion. In this study, we focused on investigating the role of TREK-1 in vivo in the development of hyperoxia-induced lung injury. Design: Laboratory animal experiments. Setting: University research laboratory. Subjects: Wild-type and TREK-1-deficient mice. Interventions: Mice were anesthetized and exposed to 1) room air, no mechanical ventilation, 2) 95% hyperoxia for 24 hours, and 3) 95% hyperoxia for 24 hours followed by mechanical ventilation for 4 hours. Measurements and Main Results: Hyperoxia exposure accentuated lung injury in TREK-1-deficient mice but not controls, resulting in increase in lung injury scores, bronchoalveolar lavage fluid cell numbers, and cellular apoptosis and a decrease in quasi-static lung compliance. Exposure to a combination of hyperoxia and injurious mechanical ventilation resulted in further morphological lung damage and increased lung injury scores and bronchoalveolar lavage fluid cell numbers in control but not TREK-1-deficient mice. At baseline and after hyperoxia exposure, bronchoalveolar lavage cytokine levels were unchanged in TREK-1-deficient mice compared with controls. Exposure to hyperoxia and mechanical ventilation resulted in an increase in bronchoalveolar lavage interleukin-6, monocyte chemotactic protein-1, and tumor necrosis factor-á levels in both mouse types, but the increase in interleukin-6 and monocyte chemotactic protein-1 levels was less prominent in TREK-1-deficient mice than in controls. Lung tissue macrophage inflammatory protein-2, keratinocytederived cytokine, and interleukin-1β gene expression was not altered by hyperoxia in TREK-1-deficient mice compared with controls. Furthermore, we show for the first time TREK-1 expression on alveolar macrophages and unimpaired tumor necrosis factor-á secretion from TREK-1-deficient macrophages. Conclusions: TREK-1 deficiency resulted in increased sensitivity of lungs to hyperoxia, but this effect is less prominent if overwhelming injury is induced by the combination of hyperoxia and injurious mechanical ventilation. TREK-1 may constitute a new potential target for the development of novel treatment strategies against hyperoxiainduced lung injury
'What is this corpus about?': Using topic modelling to explore a specialised corpus
This paper introduces topic modelling, a machine learning technique that automatically identifies 'topics' in a given corpus. The paper illustrates its use in the exploration of a corpus of academic English. It first offers the intuitive explanation of the underlying mechanism of topic modelling and describes the procedure for building a model, including the decisions involved in the model-building process. The paper then explores the model. A topic in topic models is characterised by a set of co-occurring words, and we will demonstrate that such topics bring us rich insights into the nature of a corpus. As exemplary tasks, this paper identifies the prominent topics in different parts of papers, investigates the chronological change of a journal, and reveals different types of papers in the journal. The paper further compares topic modelling to two more traditional techniques in corpus linguistics, semantic annotation and keywords analysis, and highlights the strengths of topic modelling.We believe that topic modelling is particularly useful in the initial exploration of a corpus
An Integrated-Photonics Optical-Frequency Synthesizer
Integrated-photonics microchips now enable a range of advanced
functionalities for high-coherence applications such as data transmission,
highly optimized physical sensors, and harnessing quantum states, but with
cost, efficiency, and portability much beyond tabletop experiments. Through
high-volume semiconductor processing built around advanced materials there
exists an opportunity for integrated devices to impact applications cutting
across disciplines of basic science and technology. Here we show how to
synthesize the absolute frequency of a lightwave signal, using integrated
photonics to implement lasers, system interconnects, and nonlinear frequency
comb generation. The laser frequency output of our synthesizer is programmed by
a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and
traceability to the SI second. This is accomplished with a heterogeneously
integrated III/V-Si tunable laser, which is guided by dual
dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through
out-of-loop measurements of the phase-coherent, microwave-to-optical link, we
verify that the fractional-frequency instability of the integrated photonics
synthesizer matches the reference-clock instability for a 1
second acquisition, and constrain any synthesis error to while
stepping the synthesizer across the telecommunication C band. Any application
of an optical frequency source would be enabled by the precision optical
synthesis presented here. Building on the ubiquitous capability in the
microwave domain, our results demonstrate a first path to synthesis with
integrated photonics, leveraging low-cost, low-power, and compact features that
will be critical for its widespread use.Comment: 10 pages, 6 figure
Instrumental performance and results from testing of the BLAST-TNG receiver, submillimeter optics, and MKID arrays
Polarized thermal emission from interstellar dust grains can be used to map
magnetic fields in star forming molecular clouds and the diffuse interstellar
medium (ISM). The Balloon-borne Large Aperture Submillimeter Telescope for
Polarimetry (BLASTPol) flew from Antarctica in 2010 and 2012 and produced
degree-scale polarization maps of several nearby molecular clouds with
arcminute resolution. The success of BLASTPol has motivated a next-generation
instrument, BLAST-TNG, which will use more than 3000 linear polarization
sensitive microwave kinetic inductance detectors (MKIDs) combined with a 2.5m
diameter carbon fiber primary mirror to make diffraction-limited observations
at 250, 350, and 500 m. With 16 times the mapping speed of BLASTPol,
sub-arcminute resolution, and a longer flight time, BLAST-TNG will be able to
examine nearby molecular clouds and the diffuse galactic dust polarization
spectrum in unprecedented detail. The 250 m detector array has been
integrated into the new cryogenic receiver, and is undergoing testing to
establish the optical and polarization characteristics of the instrument.
BLAST-TNG will demonstrate the effectiveness of kilo-pixel MKID arrays for
applications in submillimeter astronomy. BLAST-TNG is scheduled to fly from
Antarctica in December 2017 for 28 days and will be the first balloon-borne
telescope to offer a quarter of the flight for "shared risk" observing by the
community.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared
Detectors and Instrumentation for Astronomy VIII, June 29th, 201
Ethical and methodological issues in engaging young people living in poverty with participatory research methods
This paper discusses the methodological and ethical issues arising from a project that focused on conducting a qualitative study using participatory techniques with children and young people living in disadvantage. The main aim of the study was to explore the impact of poverty on children and young people's access to public and private services. The paper is based on the author's perspective of the first stage of the fieldwork from the project. It discusses the ethical implications of involving children and young people in the research process, in particular issues relating to access and recruitment, the role of young people's advisory groups, use of visual data and collection of data in young people's homes. The paper also identifies some strategies for addressing the difficulties encountered in relation to each of these aspects and it considers the benefits of adopting participatory methods when conducting research with children and young people
- …