244 research outputs found

    Effects of an adapted physical activity program in a group of elderly subjects with flexed posture: clinical and instrumental assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flexed posture commonly increases with age and is related to musculoskeletal impairment and reduced physical performance. The purpose of this clinical study was to systematically compare the effects of a physical activity program that specifically address the flexed posture that marks a certain percentage of elderly individuals with a non specific exercise program for 3 months.</p> <p>Methods</p> <p>Participants were randomly divided into two groups: one followed an Adapted Physical Activity program for flexed posture and the other one completed a non-specific physical activity protocol for the elderly. A multidimensional clinical assessment was performed at baseline and at 3 months including anthropometric data, clinical profile, measures of musculoskeletal impairment and disability. The instrumental assessment of posture was realized using a stereophotogrammetric system and a specific biomechanical model designed to describe the reciprocal position of the body segments on the sagittal plane in a upright posture.</p> <p>Results</p> <p>The Adapted Physical Activity program determined a significant improvement in several key parameters of the multidimensional assessment in comparison to the non-specific protocol: decreased occiput-to-wall distance, greater lower limb range of motion, better flexibility of pectoralis, hamstrings and hip flexor muscles, increased spine extensor muscles strength. Stereophotogrammetric analysis confirmed a reduced protrusion of the head and revealed a reduction in compensative postural adaptations to flexed posture characterized by knee flexion and ankle dorsiflexion in the participants of the specific program.</p> <p>Conclusion</p> <p>The Adapted Physical Activity program for flexed posture significantly improved postural alignment and musculoskeletal impairment of the elderly. The stereophotogrammetric evaluation of posture was useful to measure the global postural alignment and especially to analyse the possible compensatory strategies at lower limbs in flexed posture.</p

    Response of Agronomic and Phenological Characteristics of Bread Wheat (Triticum aestivum L.) Cultivars with Different Growth Habit to Delayed Planting

    Get PDF
    IntroductionWheat (Triticum aestivum L.) is one of the most important crops in the world as well as in Iran. It has experienced many improvements in terms of yield and quality traits during recent decades. Wheat, like energy, is known as a strategic commodity and is one of the important indicators of agriculture. This plant has the highest area under cultivation and production among other cereals in the world. Planting date is an important factor in crop production because meteorological parameters vary with changes in planting date. Delay in planting is one of the problems that is common in almost all wheat growing areas of Iran and is one of the main causes of reduced yields of wheat cultivars. Yield reduction rate varies depending on the delay in planting and cultivars, and the results of some experiments indicate that this amount sometimes reaches more than 35% of potential grain yield. Phenology and growth rate due to their effect on duration and the occurrence of different stages of development and the environmental conditions prevailing in each of these stages, are the key point of adaptation to various environmental conditions such as delayed planting date. This experiment was designed to identify the changes in yield and yield components and phenological stages of new bread wheat cultivars with different growth habits and to investigate the possibility of introducing cultivars compatible with delayed planting date in the region.Materials and MethodsThis research was conducted in two separate experiments based on a complete randomized block design with optimum planting date (6th November) and delayed planting date (6th December) on 10 new bread wheat cultivars with three replications on the research farm of the Seed and Plant Improvement Research Institute in Karaj in two years (2016-2018). The bread wheat cultivars include Pishgam, Heidari, Rakhshan, Sivand, Baharan, Sirvan, Parsi, Mehregan, Chamran 2 and Chamran. Yield and yield components such as number spike per m2, number of grain per spike, 1000-grain weight were measured at the end of the growing season to evaluate responses of the cultivars to the various planting dates. In addition, the phenological stage was recorded during the growing season.Results and DiscussionResults indicated that delayed planting date from 15th Nov. to 15th Dec. caused a significant reduction on grain yield (from 7485 to 6066 kg.ha-1), number of spikes per m2 (from 698 to 605), number of grain per spike (from 28.5 to 25.8 seed), and 1000 grain weight (from 41.1 to 38.4 g). The interaction effects of planting date and cultivars were significant on grain yield and yield components. The highest and lowest grain yield belonged to Pishgam (7436 kg. ha-1) on optimum planting date and Chamran (5842 kg.ha-1) on delayed planting date, respectively. Delayed planting date reduced duration of planting to double ridge (from 736 to 641 GDD), planting to terminal spikelet (from 982 to 886 GDD), planting to anthesis (from 1608 to 1457 GDD) and planting to maturity (from 2456 to 2265 GDD).ConclusionDuration of different developmental stage is very important for the formation of yield components that determine the final grain yield. Although these stages are a genetic trait, but they are affected by plant growth conditions and environmental stresses, climatic factors, especially temperature and day length. Our research showed that delay in planting reduced grain yield by 18% compared to the optimum planting date because of the reduced number of spikes per m2 and vegetative and grain-filling periods.Based on the results, in cases of delayed planting date (unfavorable weather conditions, insufficient planting equipment, etc.) in Karaj region or similar climatic regions, early maturity cultivars such as Mehregan and Chamran 2 and moderate maturity cultivar like Sivand are recommended in order to minimize yield loss

    Age-related hyperkyphosis, independent of spinal osteoporosis, is associated with impaired mobility in older community-dwelling women

    Get PDF
    While many assume hyperkyphosis reflects underlying spinal osteoporosis and vertebral fractures, our results suggest hyperkyphosis is independently associated with decreased mobility. Hyperyphosis is associated with slower Timed Up and Go performance times and may be a useful clinical marker signaling the need for evaluation of vertebral fracture and falling risk. While multiple studies have demonstrated negative effects of hyperkyphosis on physical function, none have disentangled the relationship between hyperkyphosis, impaired function, and underlying spinal osteoporosis. The purpose of this study is to determine whether kyphosis, independent of spinal osteoporosis, is associated with mobility on the Timed Up and Go, and to quantify effects of other factors contributing to impaired mobility. We used data for 3,108 community-dwelling women aged 55-80 years in the Fracture Intervention Trial. All participants had measurements of kyphosis, mobility time on the Timed Up and Go test, height, weight, total hip bone mineral density (BMD), grip strength, and vertebral fractures at baseline visits in 1993. Demographic characteristics included age and smoking status. We calculated mean Timed Up and Go time by quartile of kyphosis. Using multivariate linear regression, we estimated the independent association of kyphosis with mobility time, and quantified effects of other covariates on mobility. Mean mobility time increased from 9.3 s in the lowest to 10.1 s in the highest quartile of kyphosis. In a multivariate-adjusted model, mobility time increased 0.11 s (p = 0.02) for each standard deviation (11.9°) increase in kyphosis. Longer performance times were significantly associated with increasing age, decreasing grip strength, vertebral fractures, body mass index ≥25, and total hip BMD in the osteoporotic range. Kyphosis angle is independently associated with decreased mobility on the Timed Up and Go, which is in turn correlated with increased fall risk. Hyperkyphosis may be a useful clinical marker signaling the need for evaluation of vertebral fracture and falling risk

    A Modified Sagittal Spine Postural Classification and Its Relationship to Deformities and Spinal Mobility in a Chinese Osteoporotic Population

    Get PDF
    BACKGROUND: Abnormal posture and spinal mobility have been demonstrated to cause functional impairment in the quality of life, especially in the postmenopausal osteoporotic population. Most of the literature studies focus on either thoracic kyphosis or lumbar lordosis, but not on the change of the entire spinal alignment. Very few articles reported the spinal alignment of Chinese people. The purpose of this study was threefold: to classify the spinal curvature based on the classification system defined by Satoh consisting of the entire spine alignment; to identify the change of trunk mobility; and to relate spinal curvature to balance disorder in a Chinese population. METHODOLOGY/PRINCIPAL FINDINGS: 450 osteoporotic volunteers were recruited for this study. Spinal range of motion and global curvature were evaluated noninvasively using the Spinal-Mouse® system and sagittal postural deformities were characterized. RESULTS: We found a new spine postural alignment consisting of an increased thoracic kyphosis and decreased lumbar lordosis which we classified as our modified round back. We did not find any of Satoh's type 5 classification in our population. Type 2 sagittal alignment was the most common spinal deformity (38.44%). In standing, thoracic kyphosis angles in types 2 (58.34°) and 3 (58.03°) were the largest and lumbar lordosis angles in types 4 (13.95°) and 5 (-8.61°) were the smallest. The range of flexion (ROF) and range of flexion-extension (ROFE) of types 2 and 3 were usually greater than types 4 and 5, with type 1 being the largest. CONCLUSIONS/SIGNIFICANCE: The present study classified and compared for the first time the mobility, curvature and balance in a Chinese population based on the entire spine alignment and found types 4 and 5 to present the worst balance and mobility. This study included a new spine postural alignment classification that should be considered in future population studies

    The feasibility of measuring the activation of the trunk muscles in healthy older adults during trunk stability exercises

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the older adult population increases, the potential functional and clinical burden of trunk muscle dysfunction may be significant. An evaluation of risk factors including the impact of the trunk muscles in terms of their temporal firing patterns, amplitudes of activation, and contribution to spinal stability is required. Therefore, the specific purpose of this study was to assess the feasibility of measuring the activation of trunk muscles in healthy older adults during specific leg exercises with trunk stabilization.</p> <p>Methods</p> <p>12 asymptomatic adults 65 to 75 years of age were included in the study. Participants performed a series of trunk stability exercises, while bilateral activation of abdominal and back extensor muscles was recorded by 24 pairs of Meditrace™ surface electrodes. Maximal voluntary isometric contractions (MVIC) were performed for electromyographic (EMG) normalization purposes. EMG waveforms were generated and amplitude measures as a percentage of MVIC were calculated along with ensemble average profiles. 3D kinematics data were also recorded, using an electromagnetic sensor placed at the left lateral iliac crest. Furthermore, a qualitative assessment was conducted to establish the participant's ability to complete all experimental tasks.</p> <p>Results</p> <p>Excellent quality abdominal muscle activation data were recorded during the tasks. Participants performed the trunk stability exercises with an unsteady, intermittent motion, but were able to keep pelvic motion to less than 10°. The EMG amplitudes showed that during these exercises, on average, the older adults recruited their abdominal muscles from 15–34% of MVIC and back extensors to less than 10% of MVIC. There were similarities among the abdominal muscle profiles. No participants reported pain during the testing session, although 3 (25%) of the participants reported delayed onset muscle soreness during follow up that was not functionally limiting.</p> <p>Conclusion</p> <p>Older adults were able to successfully complete the trunk stability protocol that was developed for younger adults with some minor modifications. The collected EMG amplitudes were higher than those reported in the literature for young healthy adults. The temporal waveforms for the abdominal muscles showed a degree of synchrony among muscles, except for the early activation from the internal oblique prior to lifting the leg off the table.</p

    Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: a randomized controlled trial

    Get PDF
    INTRODUCTION: The purpose of this study was to investigate the effect of a 12-month Balance Training Program on balance, mobility and falling frequency in women with osteoporosis. METHODS: Sixty-six consecutive elderly women were selected from the Osteometabolic Disease Outpatient Clinic and randomized into 2 groups: the ‘Intervention’, submitted for balance training; and the ‘Control’, without intervention. Balance, mobility and falling frequency were evaluated before and at the end of the trial, using the Berg Balance Scale (BBS), the Clinical Test Sensory Interaction Balance (CTSIB) and the Timed “Up & Go” Test (TUGT). Intervention used techniques to improve balance consisting of a 1-hour session each week and a home-based exercise program. RESULTS: Sixty women completed the study and were analyzed. The BBS difference was significant higher in the Intervention group compared to Control (5.5 ± 5.67 vs −0.5 ± 4.88 score, p < 0.001). Similarly, the number of patients in the Intervention group presented improvement in two conditions of CTSIB compared to Control (eyes closed and unstable surface condition: 13 vs one patient, p < 0.001 and eyes open, visual conflict and unstable surface condition: 12 vs one patient, p < 0.001). Additionally, the differences between the TUGT were reduced in the Intervention group compared to Control (−3.65 ± 3.61 vs 2.27 ± 7.18 seconds, p< 0.001). Notably, this improvement was paralleled by a reduction in the number of falls/patient in the Intervention group compared to Control (−0.77 ± 1.76 vs 0.33 ± 0.96, p = 0.018). CONCLUSION: This longitudinal prospective study demonstrated that an intervention using balance training is effective in improving functional and static balance, mobility and falling frequency in elderly women with osteoporosis

    Dynamic reliability assessment of flare systems by combining fault tree analysis and Bayesian networks

    Get PDF
    YesFlaring is a combustion process commonly used in the oil and gas industry to dispose flammable waste gases. Flare flameout occurs when these gases escape unburnt from the flare tip causing the discharge of flammable and/or toxic vapor clouds. The toxic gases released during this process have the potential to initiate safety hazards and cause serious harm to the ecosystem and human health. Flare flameout could be caused by environmental conditions, equipment failure, and human error. However, to better understand the causes of flare flameout, a rigorous analysis of the behavior of flare systems under failure conditions is required. In this article, we used fault tree analysis (FTA) and the dynamic Bayesian network (DBN) to assess the reliability of flare systems. In this study, we analyzed 40 different combinations of basic events that can cause flare flameout to determine the event with the highest impact on system failure. In the quantitative analysis, we use both constant and time-dependent failure rates of system components. The results show that combining these two approaches allows for robust probabilistic reasoning on flare system reliability, which can help improving the safety and asset integrity of process facilities. The proposed DBN model constitutes a significant step to improve the safety and reliability of flare systems in the oil and gas industry

    Does osteoporosis predispose falls? a study on obstacle avoidance and balance confidence

    Get PDF
    Contains fulltext : 96832.pdf (publisher's version ) (Open Access)BACKGROUND: Osteoporosis is associated with changes in balance and physical performance and has psychosocial consequences which increase the risk of falling. Most falls occur during walking; therefore an efficient obstacle avoidance performance might contribute to a reduction in fall risk. Since it was shown that persons with osteoporosis are unstable during obstacle crossing it was hypothesized that they more frequently hit obstacles, specifically under challenging conditions. METHODS: Obstacle avoidance performance was measured on a treadmill and compared between persons with osteoporosis (n = 85) and the comparison group (n = 99). The obstacle was released at different available response times (ART) to create different levels of difficulty by increasing time pressure. Furthermore, balance confidence, measured with the short ABC-questionnaire, was compared between the groups. RESULTS: No differences were found between the groups in success rates on the obstacle avoidance task (p = 0.173). Furthermore, the persons with osteoporosis had similar levels of balance confidence as the comparison group (p = 0.091). The level of balance confidence was not associated with the performance on the obstacle avoidance task (p = 0.145). CONCLUSION: Obstacle avoidance abilities were not impaired in persons with osteoporosis and they did not experience less balance confidence than the comparison group. These findings imply that persons with osteoporosis do not have an additional risk of falling because of poorer obstacle avoidance abilities
    corecore