92 research outputs found

    Upgrading the Local Ergodic Theorem for planar semi-dispersing billiards

    Full text link
    The Local Ergodic Theorem (also known as the `Fundamental Theorem') gives sufficient conditions under which a phase point has an open neighborhood that belongs (mod 0) to one ergodic component. This theorem is a key ingredient of many proofs of ergodicity for billiards and, more generally, for smooth hyperbolic maps with singularities. However the proof of that theorem relies upon a delicate assumption (Chernov-Sinai Ansatz), which is difficult to check for some physically relevant models, including gases of hard balls. Here we give a proof of the Local Ergodic Theorem for two dimensional billiards without using the Ansatz.Comment: 17 pages, 2 figure

    A limit result for a system of particles in random environment

    Full text link
    We consider an infinite system of particles in one dimension, each particle performs independant Sinai's random walk in random environment. Considering an instant tt, large enough, we prove a result in probability showing that the particles are trapped in the neighborhood of well defined points of the lattice depending on the random environment the time tt and the starting point of the particles.Comment: 11 page

    Herman's Theory Revisited

    Full text link
    We prove that a C2+αC^{2+\alpha}-smooth orientation-preserving circle diffeomorphism with rotation number in Diophantine class DδD_\delta, 0<δ<α≤10<\delta<\alpha\le1, is C1+α−δC^{1+\alpha-\delta}-smoothly conjugate to a rigid rotation. We also derive the most precise version of Denjoy's inequality for such diffeomorphisms.Comment: 10 page

    A Droplet within the Spherical Model

    Full text link
    Various substances in the liquid state tend to form droplets. In this paper the shape of such droplets is investigated within the spherical model of a lattice gas. We show that in this case the droplet boundary is always diffusive, as opposed to sharp, and find the corresponding density profiles (droplet shapes). Translation-invariant versions of the spherical model do not fix the spatial location of the droplet, hence lead to mixed phases. To obtain pure macroscopic states (which describe localized droplets) we use generalized quasi-averaging. Conventional quasi-averaging deforms droplets and, hence, can not be used for this purpose. On the contrary, application of the generalized method of quasi-averages yields droplet shapes which do not depend on the magnitude of the applied external field.Comment: 22 pages, 2 figure

    Coin Tossing as a Billiard Problem

    Full text link
    We demonstrate that the free motion of any two-dimensional rigid body colliding elastically with two parallel, flat walls is equivalent to a billiard system. Using this equivalence, we analyze the integrable and chaotic properties of this new class of billiards. This provides a demonstration that coin tossing, the prototypical example of an independent random process, is a completely chaotic (Bernoulli) problem. The related question of which billiard geometries can be represented as rigid body systems is examined.Comment: 16 pages, LaTe

    Decay of the Sinai Well in D dimensions

    Full text link
    We study the decay law of the Sinai Well in DD dimensions and relate the behavior of the decay law to internal distributions that characterize the dynamics of the system. We show that the long time tail of the decay is algebraic (1/t1/t), irrespective of the dimension DD.Comment: 14 pages, Figures available under request. Revtex. Submitted to Phys. Rev. E.,e-mail: [email protected]

    Pdf's of Derivatives and Increments for Decaying Burgers Turbulence

    Full text link
    A Lagrangian method is used to show that the power-law with a -7/2 exponent in the negative tail of the pdf of the velocity gradient and of velocity increments, predicted by E, Khanin, Mazel and Sinai (1997 Phys. Rev. Lett. 78, 1904) for forced Burgers turbulence, is also present in the unforced case. The theory is extended to the second-order space derivative whose pdf has power-law tails with exponent -2 at both large positive and negative values and to the time derivatives. Pdf's of space and time derivatives have the same (asymptotic) functional forms. This is interpreted in terms of a "random Taylor hypothesis".Comment: LATEX 8 pages, 3 figures, to appear in Phys. Rev.

    Entropy and the variational principle for actions of sofic groups

    Full text link
    Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of a countable sofic group on a standard probability space admitting a generating partition with finite entropy. By applying an operator algebra perspective we develop a more general approach to sofic entropy which produces both measure and topological dynamical invariants, and we establish the variational principle in this context. In the case of residually finite groups we use the variational principle to compute the topological entropy of principal algebraic actions whose defining group ring element is invertible in the full group C*-algebra.Comment: 44 pages; minor changes; to appear in Invent. Mat

    The characteristic exponents of the falling ball model

    Full text link
    We study the characteristic exponents of the Hamiltonian system of nn (≥2\ge 2) point masses m1,…,mnm_1,\dots,m_n freely falling in the vertical half line {q∣ q≥0}\{q|\, q\ge 0\} under constant gravitation and colliding with each other and the solid floor q=0q=0 elastically. This model was introduced and first studied by M. Wojtkowski. Hereby we prove his conjecture: All relevant characteristic (Lyapunov) exponents of the above dynamical system are nonzero, provided that m1≥⋯≥mnm_1\ge\dots\ge m_n (i. e. the masses do not increase as we go up) and m1≠m2m_1\ne m_2
    • …
    corecore