Recently Lewis Bowen introduced a notion of entropy for measure-preserving
actions of a countable sofic group on a standard probability space admitting a
generating partition with finite entropy. By applying an operator algebra
perspective we develop a more general approach to sofic entropy which produces
both measure and topological dynamical invariants, and we establish the
variational principle in this context. In the case of residually finite groups
we use the variational principle to compute the topological entropy of
principal algebraic actions whose defining group ring element is invertible in
the full group C*-algebra.Comment: 44 pages; minor changes; to appear in Invent. Mat