The Local Ergodic Theorem (also known as the `Fundamental Theorem') gives
sufficient conditions under which a phase point has an open neighborhood that
belongs (mod 0) to one ergodic component. This theorem is a key ingredient of
many proofs of ergodicity for billiards and, more generally, for smooth
hyperbolic maps with singularities. However the proof of that theorem relies
upon a delicate assumption (Chernov-Sinai Ansatz), which is difficult to check
for some physically relevant models, including gases of hard balls. Here we
give a proof of the Local Ergodic Theorem for two dimensional billiards without
using the Ansatz.Comment: 17 pages, 2 figure