8 research outputs found
Density of states and electron concentration of double heterojunctions subjected to an in-plane magnetic field
We calculate the electronic states of
AlGaAs/GaAs/AlGaAs double heterojunctions subjected to
a magnetic field parallel to the quasi two-dimensional electron gas. We study
the energy dispersion curves, the density of states, the electron concentration
and the distribution of the electrons in the subbands. The parallel magnetic
field induces severe changes in the density of states, which are of crucial
importance for the explanation of the magnetoconductivity in these structures.
However, to our knowledge, there is no systematic study of the density of
states under these circumstances. We attempt a contribution in this direction.
For symmetric heterostructures, the depopulation of the higher subbands, the
transition from a single to a bilayer electron system and the domination of the
bulk Landau levels in the centre the wide quantum well, as the magnetic field
is continuously increased, are presented in the ``energy dispersion picture''
as well as in the ``electron concentration picture'' and in the ``density of
states picture''.Comment: J. Phys.: Condens. Matter 11 No 26 (5 July 1999) 5131-5141 Figures
(three) embedde
Tight-binding parameters for charge transfer along DNA
We systematically examine all the tight-binding parameters pertinent to
charge transfer along DNA. The molecular structure of the four DNA bases
(adenine, thymine, cytosine, and guanine) is investigated by using the linear
combination of atomic orbitals method with a recently introduced
parametrization. The HOMO and LUMO wavefunctions and energies of DNA bases are
discussed and then used for calculating the corresponding wavefunctions of the
two B-DNA base-pairs (adenine-thymine and guanine-cytosine). The obtained HOMO
and LUMO energies of the bases are in good agreement with available
experimental values. Our results are then used for estimating the complete set
of charge transfer parameters between neighboring bases and also between
successive base-pairs, considering all possible combinations between them, for
both electrons and holes. The calculated microscopic quantities can be used in
mesoscopic theoretical models of electron or hole transfer along the DNA double
helix, as they provide the necessary parameters for a tight-binding
phenomenological description based on the molecular overlap. We find that
usually the hopping parameters for holes are higher in magnitude compared to
the ones for electrons, which probably indicates that hole transport along DNA
is more favorable than electron transport. Our findings are also compared with
existing calculations from first principles.Comment: 15 pages, 3 figures, 7 table
Phase diagram and critical behavior of the random ferromagnet Ga1 -xMnxN
Molecular beam epitaxy has been employed to obtain Ga1-xMn xN films with x up to 10% and Curie temperatures TC up to 13 K. The magnitudes of TC and their dependence on x, T C(x)xm, where m=2.2±0.2, are quantitatively described by a tight-binding model of superexchange interactions and Monte Carlo simulations of TC. The critical behavior of this dilute magnetic insulator shows strong deviations from the magnetically clean case (x=1), in particular, (i) an apparent breakdown of the Harris criterion, (ii) a nonmonotonic crossover in the values of the susceptibility critical exponent γeff between the high temperature and critical regimes, and (iii) a smearing of the critical region, which can be explained either by the Griffiths effects or by macroscopic inhomogeneities in the spin distribution with a variance Δx=(0. 2±0.1)%. © 2013 American Physical Society
Theory of ferromagnetism driven by superexchange in dilute magnetic semi-conductors
Magnetic properties of Ga1−xMnxN are studied theoretically by employing a tight binding approach to determine exchange integrals Jij characterizing the coupling between Mn spin pairs located at distances Rij up to the 16th cation coordination sphere in zinc-blende GaN. It is shown that for a set of experimentally determined input parameters there are no itinerant carriers and the coupling between localized Mn3+ spins in GaN proceeds via superexchange that is ferromagnetic for all explored Rij values. Extensive Monte Carlo simulations serve to evaluate the magnitudes of Curie temperature TC by the cumulant crossing method. The theoretical values of TC(x) are in quantitative agreement with the experimental data that are available for Ga1−xMnxN with randomly distributed Mn3+ ions with the concentrations 0.01 ≤ x ≤ 0.1
Magnetoexcitons in nanostructures exhibiting cylindrical symmetry
The problem of an exciton in the cylindrical nanostructure exposed to an external static magnetic field is investigated. The theoretical model assumes anisotropic masses which are different inside and outside the nanostructure. The confinement potential has finite value at the boundaries and magnetic field is parallel to the axis of the cylinder. The screened Coulomb interaction between an electron and a hole is assumed. The consistent mathematical procedure is developed to calculate the magnetoexciton eigenfunctions and eigenenergies. Our method applies to the systems exhibiting cylindrical symmetry where, due to confinement effects accompanied by the e-h Coulomb interaction, the separation of relative- and center-of-mass motion is not possible. Numerical calculations have been performed for the quantum disk, the cylinder and the quantum rod. The magnetic field dependent energy spectrum and corresponding wave functions, expressed in terms of known one-particle electron and hole eigenfunctions, are calculated. Additionally, we point out the different role of Coulomb interaction in every case