258 research outputs found

    \u3csup\u3e13\u3c/sup\u3eC NMR Analysis of Biologically Produced Pyrene Residues by \u3cem\u3eMycobacterium\u3c/em\u3e sp. KMS in the Presence of Humic Acid

    Get PDF
    Cultures of the pyrene degrading Mycobacterium sp. KMS were incubated with [4-13C]pyrene or [4,5,9,10-14C]pyrene with and without a soil humic acid standard to characterize the chemical nature of the produced residues and evaluate the potential for bonding reactions with humic acid. Cultures were subjected to a “humic acid/humin” separation at acidic pH, a duplicate separation followed by solvent extraction of the humic acid/humin fraction, and a high pH separation. 13C NMR analysis was conducted on the resulting solid extracts. Results indicated that the activity associated with solid extracts did not depend on pH and that approximately 10% of the added activity was not removed from the solid humic acid/humin fraction by solvent extraction. 13C NMR analysis supported the conclusion that the majority of pyrene metabolites were incorporated into cellular material. Some evidence was found for metabolite reaction with the added humic material, but this did not appear to be a primary fate mechanism

    Locomotion of jointed figures over complex terrain

    Get PDF
    Thesis (M.S.V.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1987.MICROFICHE COPY AVAILABLE IN ARCHIVES AND ROTCH.Bibliography: leaves 104-111.by Karl Sims.M.S.V.S

    POLARIS: polygenic LD-adjusted risk score approach for set-based analysis of GWAS data

    Get PDF
    Polygenic risk scores (PRSs) are a method to summarise the additive trait variance captured by a set of SNPs, and can increase the power of set-based analyses by leveraging public GWAS datasets. PRS aims to assess the genetic liability to some phenotype on the basis of polygenic risk for the same or di�erent phenotype estimated from independent data. We propose the application of PRSs as a set-based method with an additional component of adjustment for linkage disequilibrium (LD), with potential extension of the PRS approach to analyse biologically meaningful SNP sets. We call this method POLARIS: POlygenic Ld-Adjusted RIsk Score. POLARIS identi�es the LD-structure of SNPs using spectral decomposition of the SNP correlation matrix and replaces the individuals' SNP allele counts with LD-adjusted dosages. Using a raw genotype dataset together with SNP e�ect sizes from a second independent dataset, POLARIS can be used for set-based analysis. MAGMA is an alternative set-based approach employing principal component analysis to account for LD between markers in a raw genotype dataset. We used simulations, both with simple constructed and real LD-structure, to compare the power of these methods. POLARIS shows more power than MAGMA applied to the raw genotype dataset only, but less or comparable power to combined analysis of both datasets. POLARIS has the advantages that it produces a risk score per person per set using all available SNPs, and aims to increase power by leveraging the e�ect sizes from the discovery set in a self-contained test of association in the test dataset

    Anion exchange membrane soil nitrate predicts turfgrass color and yield.

    Get PDF
    Desirable nitrogen (N) management practices for turfgrass supply sufficient N for high quality turf while limiting excess soil N. Previous studies suggested the potential of anion exchange membranes (AEMs) for predicting turfgrass color, quality, or yield. However, these studies suggested a wide range of critical soil nitrate-nitrogen (NO3-N) values across sample dates. A field experiment, in randomized complete block design with treatments consisting of nine N application rates, was conducted on a mixed species cool-season turfgrass lawn across two growing seasons. Every 2 wk from May to October, turfgrass color was assessed with three different reflectance meters, and soil NO3-N was measured with in situ AEMs. Cate-Nelson models were developed comparing relative reflectance value and yield to AEM desorbed soil NO3-N pooled across all sample dates. These models predicted critical AEM soil NO3-N values from 0. 45 to 1.4 micro g cm-2 d-1. Turf had a low probability of further positive response to AEM soil NO3-N greater than these critical values. These results suggest that soil NO3-N critical values from AEMs may be applicable across sample dates and years and may serve to guide N fertilization to limit excess soil NO3-N

    Snf2 family ATPases and DExx box helicases:differences and unifying concepts from high-resolution crystal structures

    Get PDF
    Proteins with sequence similarity to the yeast Snf2 protein form a large family of ATPases that act to alter the structure of a diverse range of DNA–protein structures including chromatin. Snf2 family enzymes are related in sequence to DExx box helicases, yet they do not possess helicase activity. Recent biochemical and structural studies suggest that the mechanism by which these enzymes act involves ATP-dependent translocation on DNA. Crystal structures suggest that these enzymes travel along the minor groove, a process that can generate the torque or energy in remodelling processes. We review the recent structural and biochemical findings which suggest a common mechanistic basis underlies the action of many of both Snf2 family and DExx box helicases

    Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1

    Get PDF
    In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1+ gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1¿ strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression

    The host metabolite D-serine contributes to bacterial niche specificity through gene selection

    Get PDF
    Escherichia coli comprise a diverse array of both commensals and niche-specific pathotypes. The ability to cause disease results from both carriage of specific virulence factors and regulatory control of these via environmental stimuli. Moreover, host metabolites further refine the response of bacteria to their environment and can dramatically affect the outcome of the host–pathogen interaction. Here, we demonstrate that the host metabolite, D-serine, selectively affects gene expression in E. coli O157:H7. Transcriptomic profiling showed exposure to D-serine results in activation of the SOS response and suppresses expression of the Type 3 Secretion System (T3SS) used to attach to host cells. We also show that concurrent carriage of both the D-serine tolerance locus (dsdCXA) and the locus of enterocyte effacement pathogenicity island encoding a T3SS is extremely rare, a genotype that we attribute to an ‘evolutionary incompatibility’ between the two loci. This study demonstrates the importance of co-operation between both core and pathogenic genetic elements in defining niche specificity

    De novo point mutations in patients diagnosed with ataxic cerebral palsy

    Get PDF
    Cerebral palsy is commonly attributed to perinatal asphyxia. However, Schnekenberg et al. describe here four individuals with ataxic cerebral palsy likely due to de novo dominant mutations associated with increased paternal age. Therefore, patients with cerebral palsy should be investigated for genetic causes before the disorder is ascribed to asphyxi
    corecore