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Abstract

This thesis describes a system that allows the creation of arbitrary
jointed figures that can be animated traveling over uneven terrain with
forbidden zones. Creatures can be easily described that have any number
of legs, each leg having any number of joints, using an interactive, graphical
"figure editor". Locomotion can be automatically generated from a figure
description using default locomotion parameters, and these parameters can
be adjusted to achieve a variety of locomotion styles. Techniques such
as inverse-kinematics, dynamic simulation, step planning, and trajectory
planning have been used.
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Chapter 1

Introduction

1.1 Towards Efficient Expression of Visual
Imagination

Someday, computers should remove the non-creative human work from the

process of creating animation. Because of the large amount of information

in a moving image, the process between an animator's visual imagination

and a physical visual experience that others can perceive is a difficult one.

Computers have begun to provide useful tools for generating animation,

but the tools are limited in many ways. A considerable time investment

is still required by the animator, and the resulting animation is usually

affected by the tool: computer animation looks like computer animation

[65]. It is still difficult to create structure and motion of arbitrary quality

and complexity without a fair amount of tedious work.

There are two fundamental ways the efficiency of a computer animation

system can be improved: it can be faster, and it can be more intelligent.
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CHAPTER 1. INTRODUCTION

1.2 Feedback Time

Speed is an obvious desirable quality of an animation system. The feedback

time in which an animator sees results is critical. Fast interactive tools are

important for specifying individual parameters of an animation such as:

creating, positioning, and coloring individual objects, choosing lighting,

and creating camera and object movements. It is also valuable to view the

complete animation with a minimum delay.

It may be interesting to briefly compare visual communication and audi-

tory communication with respect to feedback time. When a musician plays

an instrument the result of his actions are heard instantaneously. This real

time feedback allows the musician to quickly zero in on the sound he has

in mind and play with "feeling". Music synthesis is difficult when there

is a delay between choosing parameters and hearing the resulting sounds,

such as in most computer music. We don't think of the possibility of cre-

ating arbitrary animation of complex moving objects in real time because

it seems impossible, although we do participate in some real time visual

communications such as dance.

The intelligence of an animation system also affects the feedback time.

Efficient representation should decrease the time in the part of the feedback

cycle that directly involves the animator.
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CHAPTER 1. INTRODUCTION

1.3 Efficient Representation

There are many ways in which an animation system can be more intelligent.

An animation system needs to understand things about physics and behav-

ior, and should be able to communicate well with the animator. Tools for

generating animation from abstract descriptions should be available. An

animator should be able to describe structure and motion by specifying a

small but efficient amount of information.

The ability to combine and abstract is essential. We need to build

layers of procedures that allow increasingly higher levels of control. To

efficiently represent new pieces of animation, it should be possible to make

the animation system understand new representations. If new tools can

easily be made by combining existing tools, the difference between building

an animation system and using it narrows.

An example of efficient representation of structure is the fractal. De-

tailed surface shape can be described using only a few parameters, although

the ability to specify the exact final surface is then lost.

Most of the work described in this thesis is concerned with efficient

representation of motion. A system has been built that allows animation

of locomotion of jointed figures, where the user provides only high level

instructions instead of specifying many joint angles or position details for

individual body parts.

A user can quickly draw an arbitrary creature with an interactive fig-

ure editor, this creature can become three dimensional and can then walk
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CHAPTER 1. INTRODUCTION

or hop over uneven terrain completely automatically. No motion specifi-

cation is necessary from the user, although locomotion parameters can be

adjusted to vary the motion. The modules that work together to provide

this functionality are outlined in figure 1.1.

figure 1.1

Locomotion
Parameters

2D
Nodes and

Connections

limb specification '9

Animation

cartesian coords
for feet

(inverse kinematics)
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CHAPTER 1. INTRODUCTION

1.4 Overview of Thesis

Chapter 2 outlines relevant research that has been done in the fields of both

computer graphics and robotics.

Chapter 3 explains how levels of motion representation can be built up to

create complex motions for locomotion.

Chapter 4 describes a tool that allows interactive creation of jointed figures,

and explains how they are analyzed to determine which parts are which.

Chapter 5 describes the method used to represent jointed figures such that

forward and inverse kinematics can be easily performed on them.

Chapter 6 explains the details of techniques used to perform inverse-kinematics

on redundant limbs. Details on the pseudo-inverse are included in Appendix

B.

Chapter 7 discusses dynamic considerations for computer animation. The

techniques used for dynamic simulation and hybrid dynamic kinematic con-

trol are described.

Chapter 8 explains how the terrain model is used for surface height detec-

tion and forbidden zone detection.

Chapter 9 discusses locomotion in general, and parameters such as gait

that can be used to vary locomotion.

Chapters 10 and 11 explain the techniques used to generate animation of

walking and pronking creatures over complex terrain.

10



CHAPTER 1. INTRODUCTION 11

Chapter 12 explains the techniques used to generate animation of bouncing

polyhedra.

Chapter 13 discusses the animation systems ability to record sound events

that can be used to create a sound track for the animation.

Finally, Chapter 14 summarized the animation system that has been im-

plemented.

The Appendix contains some details on the jointed-figure editor user inter-

face, some miscellaneous algorithms, and a section on the pseudo-inverse.



Chapter 2

Relevant Work

Many methods have been developed for describing and calculating motions

of jointed figures from research in the fields of both robotics and computer

graphics. See (77] for a survey of general techniques used in computer

animation systems. Motion control for physical robots needs to be accurate

and performed in real time. This currently often restricts locomotion of

robots to be either simple or slow. Computer graphics animation does

not suffer from the same restrictions as robotics, it does not need to be

performed in real time and it can be less accurate, although it should still

look correct. Some of the same techniques that are useful for generating

and simulating robot motion are used in computer graphics animation.

Michael Girard has developed a legged figure animation system called

PODA [13,14]. His work is probably the most related of any to the work

described in this thesis. PODA uses key frame interpolation, inverse kine-

matics, and trajectory planning with dynamic considerations to generate

almost realistic looking locomotion. The dynamic equations are decom-

12



CHAPTER 2. RELEVANT WORK

posed into horizontal and vertical components to lower their complexity.

Girard's work and this work both involve generating motions for jointed

figure locomotion. The main advantage of PODA over this system is that

it allows a wider variation of movements to be created: figures have been

animated turning, banking, and even dancing. The tradeoff is that PODA

requires many more details for limb and body motions to be supplied by

the animator than this system does, the animator creates postures and

posture sequences to carefully build the motions for correct looking loco-

motion [14]. This system will automatically generate locomotion from a

jointed figure description and a few locomotion parameters that can then

be adjusted by the animator. PODA has generated locomotion only over

flat terrain, whereas this system considers uneven terrain with forbidden

footstep zones. PODA does not use dynamic simulation as this system can,

although dynamically correct trajectories can be calculated.

David Zeltzer has done significant research on goal-directed animation

systems [75,76,77,78]. A walking skeleton named George has been ani-

mated in which gait control parameters are adjusted as the environment

changes so George can walk up and down slopes [76]. In [77] Zeltzer dis-

cusses a three level hierarchy for character animation: guiding, animator

level, and task level. Guiding includes motion recording, key-frame inter-

polation, and shape interpolation systems. Animator level systems allow

algorithmic specification of motion. Task level animation systems must

contain knowledge about the objects and environment being animated, and

the execution of motor programs is organized by the animation system.

13
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The work described in this thesis is an example of one component of a task

level animation system.

Marc Raibert has developed physical 2D one-legged and two-legged hop-

ping machines, as well as 3D one-legged and four-legged hopping machines

[48,49,50,51,52,53). The 3D one-legged hopper can run and balance on a

flat surface [49]. The control of the machine is decomposed into parts: for-

ward running velocity is controlled by the position of the foot with respect

to the center of gravity, body attitude is controlled by torquing the leg

during support phase, and hopping height is controlled by the amount of

thrust exerted by the leg on each hop.

Norman Badler has generated animation of human figures using a sys-

tem called TEMPUS [4,5,6,7]. A biped called "bubble woman" has been an-

imated performing various motions. Badler does not use inverse-kinematics

in his work, the abilities of abstraction and adaptive motion are limited,

and this system is restricted to human figures.

Jane Wilhelms has done some analysis on dynamic simulation for real-

istic animation of articulated bodies [72]. She has animated falling human

bodies and single arms, but the dynamic simulation is computationally ex-

pensive and has prevented the use of dynamic simulation with complex

articulated figures.

W. W. Armstrong and M. Green have developed a solution to the dy-

namic equations of motion for computer animation that grows linearly in

computation time with the number of links [2]. They also discuss a tech-

nique for developing human figure models based on these dynamics.
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CHAPTER 2. RELEVANT WORK 15

Anthony Maciejewski, [28,29,13], and Charles Klein, [24,25,26,29,37],

have done research on using the redundancy in robot manipulator arms.

Pseudo-inverse control allows the redundance of limbs to be used for achiev-

ing secondary goals such as obstacle avoidance [24,26,28,29,37]. They have

also worked on some methods for generating motions of legged structures

[25,13].



Chapter 3

Levels of Motion
Representation

There are many ways to control the motions of objects. Single objects

are fairly easy to control, but when objects start affecting each other and

have constraints and dependencies, the problem becomes more difficult.

Primitive tools for generating motion of single objects are combined and

abstracted to give tools for creating motions for groups of objects. High

levels of control can eventually be created that allow complex motions such

as locomotion of jointed figures.

3.1 Controlling a Single Object

3.1.1 Position

Position control is a primitive tool in any 3d modeling or animation system.

A single object may have nine degrees of freedom, translation, rotation, and

scaling, on each of the three axes. Keyframe interpolation and scripting

are methods that allow generating motion from a series of positions. Spline
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curves are usually used to smoothly connect the user specified positions

[71,77].

3.1.2 Velocity

Velocity control is not commonly used in animation systems. Some flight

simulators use velocity control for moving the camera position, although

acceleration or force control is probably a more accurate model of a real

airplane. Given velocity specifications for an object the change in position

can be found by integrating velocity. When using velocity control, the

animator may begin to lose the ability to predict the resulting positions of

the object.

3.1.3 Force

In reality, forces are actually what cause change in motion. It is impossible

to just tell an object to be at a certain location as we can in the imaginary

world of computer graphics. In reality we must apply forces to move some-

thing, although it is amazing that when we move ourselves we can think of

it in terms of position and the correct forces seem to occur unconsciously.

Force control is equivalent to acceleration control except the mass has an

effect in force control. Force is directly related to acceleration by the re-

lationship F = ma. An acceleration causes a change in velocity which in

turn causes a change in position.

Given the positions, velocities, or accelerations of an object, the other

two can easily be determined by differentiating or integrating. We often

17



CHAPTER 3. LEVELS OF MOTION REPRESENTATION

care where objects end up, which can be difficult to predict using force

control, but because force control produces more realistic motion it is often

worthwhile. The motion of an object under the influence of gravity may

be easier to specify with force control than position control, since gravity

is a constant acceleration. Muscles forces have strict maximums, which

are easier to avoid using force control. Muscle forces require energy that

might want to be minimized. A discontinuous velocity would require an

unrealistic pulse force of zero duration, so force control assures a path of

an object will have a continuous derivative and a more realistic dynamic

motion.

3.2 Controlling a Group of Objects

Often, desirable animation involves a large number of solid objects. There

may be constraints on groups of objects, or they may have dependencies on

each other. It becomes unreasonable for an animator to specify a motion

for each object independently. It is necessary to have the ability to describe

movements for an entire group of objects abstractly. An example of this

that will be described later is specifying the movement of the sections of

a leg by only specifying the movement of the foot. Other examples are

describing the motion of a large number of particles or objects with a set

of rules that is applied to each object. These techniques can give rise to

effects such as fire, grass, flocking birds, or schooling fish [54,55,56,57).

18
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3.2.1 Object Hierarchies

It is often useful to have objects move relative to other objects which may

also have motion. For example it is easier to specify the movement of a

head of a figure as a movement relative to its body. The animator speci-

fies motion for each individual object relative to its parent, and the final

motion of an object depends on the motions of all the objects above it in

the hierarchy. This is a useful representation when objects are physically

attached to each other in some way. But describing motion for each object

still requires the same amount of information from the animator.

3.2.2 Limb Control

A limb will be any chain of solid links connected by joints. A limb will

have a base joint that is probably connected to a body of a creature, and

an end-effector that is probably a hand or foot. The motion of each link is

constrained by the axes of the joint or joints that connect it to other links.

Each link can be positioned relative to it's parent by rotating a single

joint. This is called forward kinematics. Notice that it can be difficult

for the animator to predict where the end-effector of the limb will end up

especially if there are a large number of joints. Many iterations of the

human animator adjusting joint angles may be necessary before the desired

motion is achieved.

Often a more desirable mechanism for positioning the links of a limb is

to specify a position of the end-effector. A set of joint angles that will give

19
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this desired end-effector position can be automatically calculated using a

technique called inverse-kinematics that is described in detail in chapter

6. With inverse-kinematics tools the amount of information necessary to

control a limb can be cut down by a significant amount. A limb with 6

joints could be controlled by just giving 3 position parameters for the end-

effector as opposed to giving position and orientation for each link of the

limb separately which corresponds to 36 parameters (6 joints x 6 degrees of

freedom). The motion of an entire limb can often be efficiently described

by specifying the motion of its end-effector.

3.2.3 Locomotion control

Given a description of a legged creature, the creature can be instructed to

transport itself over a given terrain in a variety of locomotion styles. The

motions of all the parts of the creature are generated automatically by the

animation system from a set of locomotion parameters. Locomotion control

combines other methods of control such as limb control and force control.

Force control is used to help produce dynamically correct looking motions

such as hopping. Inverse-kinematics is used to control the limbs from feet

trajectories.

Locomotion should be adaptive to the terrain. Creatures can adjust

their pitch and altitude as they walk over bumps in the terrain. Each foot

of a walking creature should stay in contact with the the surface when the

foot is used for support, and should step over obstructions in the terrain if

necessary.

20
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There are many ways a creature can travel over a certain surface. A set

of locomotion parameters such as a gait pattern and speed can be changed

to give a wide variety of possible locomotion styles.

3.2.4 Behavior and Goal Directed Control

In behavior and goal directed control, even more abstract information would

be supplied by the animator. For example, a character might be given the

following instructions: "Go to the center of the room and jump over the

box", "pace back and forth impatiently", or "hop on one foot around the

room". The information might be provided to the animation system in

some way other than actual English but it would be equally efficient.

Since there are many ways to reach most physical goals, one of the ways

could be chosen from a behavior specification. A simple walk for example

can express a variety of feelings such as happy, sad, peaceful, or mad.

Different moods could be mapped into different locomotion parameters, for

example, happiness might increase the bounciness of the body trajectory.

The animator would have the ability to view the default results for a given

mood and then adjust the locomotion parameters to fine tune the style.

An even more intelligent animation system might be able to take in-

formation such as character descriptions including personalities, and an

environment description, and generate animation from that. It would have

to make decisions about how each character would behave and speak, and

how they would interact with each other, and then generate the appropriate

motions and sounds. The animator could instruct them but only on the

21
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level that a play director might instruct his actors.

Before motion can be generated intelligently, the structures that the

motions will be applied to must be created. The next chapter explains how

jointed figures have been created for use in animation.



Chapter 4

Jointed Figure Editor

This chapter describes a system for interactively creating arbitrary two

dimensional networks of nodes and connections. These networks are used to

create three dimensional networks of joints and links that represent legged

creatures that can be animated efficiently.

4.1 Interactive Environment

The interactive environment used for creating jointed figures consists of a

menu of operations that can be chosen with a mouse, and a mouse sensitive

area of the screen that allows drawing nodes and connections. Figures are

created flat as if on a dissection table, with head up, tail down, and legs

in any other direction. Below are four examples of figures that have been

drawn with the jointed figure editor.

23
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figure 4.la
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figure 4.1b
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CHAPTER 4. JOINTED FIGURE EDITOR

A set of operations that can move or copy sets of nodes allow arbitrary

jointed figures to be created efficiently. Any pattern in the structure can be

taken advantage of to save time. If the figure has symmetry or similar legs,

part of the figure can be made and then duplicated, or mirrored. Details

of the interactive environment for creating jointed figures are provided in

the first section of the appendix.

4.2 Network Analysis

Once a two dimensional network of nodes and connections has been created

using the tools briefly described above, the network is analyzed to determine

what animal parts the nodes represent. The legs and body are determined,

and the head and tail are found if they exist. Then 3-D joints and links are

created and joint axes are assigned.

First the largest group of connected nodes is found, any nodes not con-

nected to this group are ignored. Nodes with only one connection are

assumed to be the appendage tips. These are each followed until a node

with more than one connection is reached, this will be the base node of the

appendage. In this way all appendages are determined. The appendages

are separated into legs, head, and tail, depending on the position of their

base nodes. The body of the figure is described by all of the base nodes of

the appendages plus nodes that are not part of any appendage.

A three dimensional joint-link network is created from this two dimen-

sional information. In figure-editor space, (rf, yr), the head of the creature

26



CHAPTER 4. JOINTED FIGURE EDITOR

is assumed to point up along the -Yf axis, in the 3D jointed-figure cre-

ation coordinate system, (xe, ye, ze), the head is assumed to point along

the +xe axis, and the -ye axis is assumed to be up. The transformation

from 2D figure-editor space to 3D jointed-figure space can be defined by

the following matrix:

ze 0 -1~
ye = 0 0 Xf (4.1)

Lze 1 0 . - Y

There is not always a one to one mapping between 2D node connections

and 3D solid links. The body which is described by a group of nodes that

are usually interconnected with several connections, becomes a single solid

3D link having joints connecting it to each appendage, although the rest

of the connections that are not part of the body each produce a single

link. There is also not always a one to one mapping between 2D nodes

and 3D joints. In this work, each joint will be limited to one degree of

freedom, either rotational or prismatic. Ball joints and Spherical joints can

be created by combining more than one single-degree-of-freedom joint.

For the new creature to move its joints in three dimensions, axes of

rotation must be determined for each 3D joint. Some nodes will need more

than one axis of rotation, for example hips and shoulders become ball joints,

which are actually multiple joints with one axis of rotation each.

There are two styles of creatures that can be made from the jointed

figure editor: "insect" and "mammal". Each style determines a different

set of default joint axes. These two choices for defaulting joint axes seem
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to cover most cases fairly well. A variety of jointed figures have been made

that are somewhat recognizable as realistic creatures. Spiders, beetles,

water bugs, horses, camels, antelopes, kangaroos, and birds have all been

created, as well as many imaginary unrecognizable creatures. "Insect" style

causes joint axes to align perpendicular to the two links the joint connects.

If we held our arms out to the sides with thumbs down and elbows up, this

would mimic the "insect" style. "Mammal" style causes joint axes to be in

the up direction, so that when the legs are folded down, the axes point out

to the side and they bend correctly as our legs do. Ball joints are created

at the base of every leg for both "insect" and "mammal" styles. Below are

three dimensional examples of an "insect" and a "mammal" made with the

jointed figure editor.

figure 4.2, "insects" and "mammals"
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Jointed Figure Representation

This chapter describes the data structures used to represent jointed figures

and procedures that allow manipulation of them. Jointed figures are rep-

resented in such a way that forward kinematics or inverse kinematics can

be performed between any two parts of the figure.

5.1 Joints and Links

The solid parts of a jointed figure will be referred to as links. Links are

flexibly connected by joints. Joints and links mutually connect each other,

but a joint can only connect two links, whereas a link can connect any

number of joints. Circular connections, or closed chains are not permitted.

Each joint has a single degree of freedom:, it allows rotation or translation

about a specific axis between the two links that it connects. Revolute joints

rotate around the axis, prismatic joints slide along the axis. Joints describe

the flexibility of the figure and determine the relative positions of the links.

Links are the physical objects that a figure is actually made of. It is the
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positions and orientations of the links that we are ultimately concerned

with for rendering. In the illustrations that follow, joints will be drawn as

circles, and links will be drawn as polygonal shapes or straight lines.

5.2 Axis and Position Joint Representation

As described in the previous chapter, a jointed figure can be created from

a two dimensional network of nodes and connections made by an interac-

tive figure editor. A network of joints and links could also be constructed

procedurally. A procedure or the jointed figure editor produces a set of

joints and links where each joint's data structure contains the following

information:

1. Position in the creation coordinate frame.

2. Axis in the creation coordinate frame.

3. One or two links that the joint is attached to.

figure 5.1

Y joint
creation
axis

joint
joint

XCreation frame
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figure 5.2

31

From this initial joint data, other information is calculated for the joints

and links. The center of mass of each link is estimated by averaging the

positions of the joints attached to it. Each link calculates and stores the

positions of its joints relative to its center such that the relative positions

of joints to each other can be easily determined [see figure 5.3].

figure 5.3
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Each joint is given a preferred angle, and a full-extension angle that will

cause its links to align as straight as possible. The preferred angle de-

faults to zero, or the angle it was created at, but if this angle is near the

full-extension angle, it is altered. Finally, each joint calculates and saves a

rotation matrix and its inverse that will allow efficient calculation of rota-

tion about its arbitrary axis. [See the appendix for more on rotation about

an arbitrary axis.]

Some link is always assigned as the base link for the figure. When the

base link is given a position in the world coordinate frame, each joint can

calculate its world position from its parent's world position and its creation

position relative to its parent's [see figure 5.4].

y link joint

ink

Vector from link
joint to child joint

joint

World frame X

figure 5.4

An alternative form of joint representation is that of Denavit-Hartenberg

(DH) notation. Four parameters, (0, r, a, a), for z and x axis, translation
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and rotation, are given for each joint in a chain that relate its position

to the parent joint [44]. There are three advantages of axis and position

(AP) notation over DH notation. First, it is more intuitive to specify the

positions and axes of joints than it is to figure out their DH parameters,

although there are now 7 numbers needed for each joint (3 for axis, 3 for

position, and 1 for the current joint rotation angle) instead the 4 of DH.

Second, AP representation is less directional than DH notation. More com-

putation is needed to alter the base and tip joints of a network using DH

notation. Reversing the direction of DH parameters can be confusing, but

in axis and position representation the base and tip links can just be re-

assigned and each joint is given a new parent joint. Third, it is easier to

form branching structures. DH notation is usually used for manipulator

arms consisting of a single chain of joints, there is no standard method of

branching joints and links.

5.3 Joint Link Network

A jointed figure consists of a network of joints and links. There is no fixed

hierarchical structure in a figure network, although a figure has a temporary

tree structure. A network is used instead of a fixed tree structure so the

figure can be dynamically reconfigured into new hierarchical trees when

different parts of the figure act as the base [see figure 5.5]. When a new

base link for the entire figure is specified, (usually the body link) each joint

determines which joint if any is its new parent, which joints are its new
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children, and what its position relative to its new parent is.

figure 5.5
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Limbs are created which hold the information necessary to perform

inverse kinematics between two joints: a base joint and a tip joint. A

jointed figure may have any number of limbs at one time, each with a

different base and tip joint. The limb bases do not have to be the same

as the base of the entire figure network, although the orientation of limbs

should agree with the direction of the current tree structure of the figure

network [see figure 5.6).

figure 5.6, Limbs
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The limbs may be dynamically rearranged. Normally, a limb represents

an arm or leg where the base is the shoulder or hip, and the tip is the hand

or foot, but suppose an animator wanted to position a sitting character's

elbow at a particular location. A limb could be created with the base at

the character's pelvis, and the tip at his elbow. Although this is not what

would usually be called a limb, the animator can now specify elbow location

and inverse kinematics can be used to bend the waist and shoulder to give

this elbow position. A limb may also change in direction, for example, a

walking inch worm has been animated where the base and tip joints are

swapped between each step.

Tip Tip

Base Base

figure 5.7, Change of base and tip

5.4 Calculating the Link Positions and the
Jacobian Matrix

The two primary things that need to be calculated from the jointed

figure network are link position matrices and jacobian matrices. Figure 5.8
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shows the subset of the modules in figure 1.1 that involve connections to the

jointed figure module. Position matrices for each link must be calculated

from the joint values to allow rendering of the figure. The jacobian matrix

for a given base and tip joint must be calculated for use in inverse kinematics

[described in the next chapter]. The necessary calculations are outlined

below.

Figure
Editor

Link
Jointed ..n

Joint values -ositions Figure
(forward kinematics) Figure Renderer

Cartesion values Joint
(inverse kinematics) ~ values Jacobian

figure 5.8

The position and orientation of each joint relative to its parent is calcu-

lated by translating by its position relative to its parent, and then rotating

about its axis by the amount of its current joint value.

The position matrix of each joint relative to the base is calculated by
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multiplying its parent's matrix relative to the base by its position matrix

relative to its parent.

The position and orientation of each link is calculated by transforming

by the position of the base joint, transforming by the position of it's parent

joint to the base, and then translating by the distance from its parent joint.

The axes relative to the base are calculated for each joint by rotating

the creation frame axis by the position matrix from the base.

A jacobian matrix is a matrix containing partial derivatives. It relates

the change in each cartesian tip parameter (X, y, z, p, tp, ik) to the change in

each joint angle O6. Here is a jacobian matrix J for a six jointed limb:

L9X ax a9X ax (9 X (

a9y ay ay ay ay ay
YO1 a6 2  Y0 3  894 aO5  890

3z ax ax 8z ax 8x

ae01  ao2  803 04 805 a804G (5.1)
ap ap 8p ap ap 8p

ao1 252  O3  aO4  O5  a0 6

av ap a a ap a
a61 2i 2  O 3 04 ao5  a86

atP at at a1P ao at
aO 802 a03 L94  a5 ag0

There are two types of jacobians used, the one above includes both posi-

tion and orientation parameters for the tip. Another, which will be referred

to as the translate jacobian Jt, only relates the tip position parameters to

the joint angles.
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19X 8x ax 19 X z 81 z 9
YO~ 802 803 8i$4 805 806

Jt av ay aY aY aY ay (5.2)
01 82 803 804 801 806 (

89z 8Z C1z 9Z 19Z 89z
0~ 8 02 89 3 8O4  895 896

The jacobian is calculated using the joint axes and joint positions rela-

tive to the base. The first three rows, are the translational partial deriva-

tives, and are equal to the cross products of the axes with the positions of

each joint from the base. The second three rows of the jacobian, are the

rotational partial derivatives, and are equal to the axes of each joint. The

next two chapters will contain information about how jacobian matrices

are used.

In conclusion, this jointed figure representation will support several

types of operations. A jointed figure can be made by giving joint posi-

tions, axes, and connectivity. Limbs can be specified with base and tip

joints. Joint angles can be directly supplied (forward kinematics), or the

cartesian position of a limb tip can be requested and the joint angles can

be calculated using the jacobian matrix (inverse kinematics).



Chapter 6

Inverse Kinematics

When a character or a creature is manipulated for animation, the positions

of the hands and feet are often what the animator is most concerned with.

Usually the control of a jointed figure is performed by choosing positions

or joint angles of each body part relative to the body part it is connected

to. As discussed in previous chapters, it is often much more efficient if

the animator can specify a hand or foot position, and the joint angles

are automatically calculated by the animation system that will give this

position. Inverse kinematics gives this capability [see figure 6.1].

A single unconstrained solid object has six degrees of freedom, three

translational and three rotational. Most natural limbs have enough joints

to give at least six degrees of freedom at their end-effector. If six degrees

of freedom are specified for the end-effector (both position and orientation)

but the limb has more than six degrees of freedom, the limb is called redun-

dant or underconstrained, and there may be more than one solution to the

inverse kinematics problem. If position but not orientation is specified for
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the end-effector, and the limb has more than three degrees of freedom, then

the problem is also underconstrained. If a limb has fewer degrees of free-

dom than the end-effector goal vector, then the problem is overconstrained.

The pseudo-inverse provides an iterative technique for performing inverse-

kinematics calculations on arbitrary limbs that may be underconstrained

or overconstrained.

Forward
kinematics

Inverse
kinematics

figure 6.1

6.1 Pseudo-inverse Iterations

Finding closed form solutions for the joint angles 6 from a end-effector po-

sition x can be difficult because there may be many solutions as mentioned

above, and because the problem is highly non-linear and intractable for all
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but simple linkages.

The problem is however, linear in velocity space. It is more reason-

able to relate the change of end-effector parameters i with the change of

joint values b and solve the inverse kinematic problem incrementally. This

method is general, it can be used for any limb geometry, but the tradeoff is

that more computation is needed since iteration is involved. The jacobian

matrix describes how the change or instantaneous velocities of i and b are

related.

= JO (6.1)

The computation involved to invert the jacobian and solve this equation

for 0,

o = J-± (6.2)

is discussed in Appendix B.

In each pseudo-inverse iteration a desired change Ax in the end-effector

is determined, and the joints are incremented by the corresponding AO

from the pseudo-inverse. Since the pseudo-inverse actually relates the in-

stantaneous velocities ± and b, there is some error in the resulting Ax. If

the desired end-effector position is a significant distance from the current

end-effector position, Ax is large, and even if the method above is repeated,

the limb may never converge on the desired end-effector position.

To assure the limb will reach the final desired end-effector position,
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the path between the current and desired end-effector positions is divided

into small segments. Pseudo-inverse calculations are performed for each

segment of the path, such that Ax is kept small. For each new point on

the path, a new Ax is found between the end-effector position from the last

iteration, and the next point along the path [see figure 6.2].

destination

y 'ax
x2

x0 X

initial position

figure 6.2

The size of the segments along the path is adaptive to the magnitude of

the error between the desired Ax and the actual Ax. If the error is above

a certain maximum the joints are returned to their previous values, and

a smaller segment is used. If the error is small, a larger segment is used

[see figure 6.3). This method has shown to be successful at keeping the

pseudo-inverse calculations to a minimum, while still reaching the desired

position. When a limb is traveling through an ill-behaved configuration

that produces inaccurate results from the pseudo-inverse, the segment size

is reduced, but when the limb is in a well behaved region, the segment size
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can be large.

figure 6.3

base

path of tip

6.2 Preferred Joint Values

Natural joints have physical constraints that cause minimum and maximum

angles that they can not extend beyond. When using pseudo-inverse for

inverse-kinematics, joint limits can be avoided by providing the pseudo-

inverse with secondary goal information. All the joints in a jointed figure

description have preferred joint values, or center angles, that are used in an

attempt to keep the joint angles within their limits. If a goal is reachable

and the pseudo-inverse has many solutions, the solution with the minimum

difference to the preferred angles is given. If a goal is not reachable, the
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pseudo-inverse will give the closest solution. [See Appendix B for details

on the pseudo-inverse.]

6.3 Dealing With Singularities

There are a set of configurations that a limb can be in for which the jaco-

bian matrix is non-invertible or singular. If the limb is near one of these

configurations the Jacobian is ill-conditioned and the pseudo-inverse is sub-

ject to errors, some of it's elements may be very large, and some very small.

If the limb is exactly at one of these configurations the pseudo-inverse can

not be used at all. The value of the determinant of the Jacobian can be

used to predict how near a singularity a limb is.

A common example of a singularity occurs when a limb is fully extended

and the desired motion of the tip (or end-effector) is towards or away from

the base. There is no set of joint velocities that will give a cartesian tip

velocity in that direction.

There are some methods for avoiding singularities and increasing tolera-

tion of being close to singularities. The ability to deal with being near a sin-

gularity can be increased by using higher precision floating point. Singulari-

ties can be avoided by providing secondary goal information [24,26,28,29,41],

as described in Appendix B.

Natural creatures seem to be able to deal with singularities just fine,

and in fact often use them to their advantage. Efficient support is obtained

when a leg or arm is fully extended, or even slightly over-extended. When
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a running creatures leg first touches the ground or just leaves the ground,

it is often fully extended.

To animate the locomotion of arbitrary jointed figures, some method for

allowing limbs to fully extend seemed necessary. Using the pseudo-inverse

and avoiding singularities, or just increasing tolerance of being close to

them, was not sufficient.

6.3.1 Allowing Full Extension

First a method was developed that can detect when a limb is within a

region near the singularity of full extension. If the distance between the

base and tip of a limb is near the fully extended length of the limb, the

limb is in this dangerous singularity region.

figure 6.4
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If a limb is moving from the singularity region or into the singularity

region, a different method for manipulating the limb is used. This method

assumes that a limb contains a ball joint at its base. The tip position is

reached by first finding joint angles that put the tip at the correct distance

from the base, and then the base ball joint is adjusted to position the tip

exactly at the requested position.

Each joint has a preferred value that causes it to be bent one way or

another, not straight out. If all the joints of a limb are at their preferred

values, the limb should be out of the singularity region shown in figure 6.4.

Each joint also has a full-extension value that causes it to be as straight

out as possible.

When the limb tip is moving through the singularity region, the joint

angles that give the desired distance from the base are found by performing

a binary search between two sets of joint values: if the limb is getting

shorter: from the current configuration, towards the preferred joint values,

if the limb is getting longer: from the current configuration, towards the

full extension joint values. The desired distance should be between the

distances of these two limb configurations.

Once the joint angles have been found that place the tip at the requested

distance from the base, the ball joint at the base is adjusted. Pseudo-inverse

kinematics for the two degrees of freedom of the ball joint is used to position

the tip at the desired location.

The limitations of this method are:
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1. The limb must have a ball joint at its base.

2. It only deals with singularities at the full extension configuration.

3. The orientation of the tip can not be specified, only the location.

However, this has been shown to be effective in performing inverse kine-

matics when the limb is near or at full extension. It has been sufficient to

allow the inverse kinematics necessary for locomotion.



Chapter 7

Dynamics

It is difficult for kinematically defined motion to look dynamically correct

[13,14,2,72,68,6]. Forces are what actually cause physical things to move.

It is physically unrealistic to specify just a series of positions to generate

motion, unless these positions are carefully calculated with the laws of

physics in consideration.

Unfortunately, it can be difficult to create complex motion such as loco-

motion by specifying only forces and torques (from muscles), and simulating

the dynamics of the system to get the resulting motions. This is difficult

for two reasons:

1. It may be difficult to calculate a complete dynamic simulation for a

complex system of connected joints and links [72,2].

2. It is difficult to calculate the necessary forces and torques to give a

desired complex motion.

Some areas of robotics research are faced with the problem of item 2
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above [10,16,48,49,51,27,68]. Fortunately for computer graphics, computa-

tions do not need to be performed in real time as they do in robotics, and

motion doesn't necessarily need to be correct as long as it looks correct. It

is important, however, to realize how sharp humans are at perceiving and

predicting dynamics.

The extreme of complete force generation and dynamic simulation is the

ultimate way of achieving dynamically correct motions, and may well even-

tually be the best way to create realistic movements for animation. In this

work, simplifications have been made that allow easier motion calculation,

but some dynamic simulation is performed and some amount of dynamic

correctness is still achieved.

The following sections of this chapter discuss what is involved in dy-

namic simulations of single bodies and of articulated figures, some pos-

sible methods of finding muscle forces are mentioned, and finally hybrid

dynamic-kinematic control is discussed.

7.1 Dynamic Simulation of Single Rigid
Bodies

Given a rigid solid body with forces acting on it, its motion can be sim-

ulated with reasonable dynamic accuracy using the following model. The

translational and rotational effects of the forces are found independently,

and the translational and rotational variables are calculated separately to
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incrementally give new positions and orientations of the object.

Time is divided into small increments of duration At that are shorter to

the time of a single frame of animation, or 1/30 second. For each time incre-

ment, the acceleration is found, velocity is updated from acceleration, and

finally position is updated from velocity. This is done for both translation

and rotation.

A body is represented by a set of n point masses mi that sum to a total

mass mT. The state variables of an object are position P, an orientation

matrix R, linear velocity Vt, angular velocity Ve, and forces F acting on the

body at specified locations Li. Gravity is usually one of the forces acting

on the body at its center of mass.

The translational acceleration At is simply the sum of the force vectors

divided by the total mass:

At =Fi (7.1)
mT

and the translational velocity is

V| Vt + fAtdt (7.2)

If the simulation time increment At is small enough, the quantity being

integrated can be approximated to be constant, so the velocity above can

be rewritten as

V = V + At (73
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The new position of the center of mass is

P = P + Vtdt (7.4)

again, this can be approximated by

P' = P +VAt (7.5)

Calculating the rotational effects of the forces on the body is somewhat

more difficult than the translational effects, but the same strategy is used.

The torques are calculated using the direction and magnitude of the force

vectors F and also the locations that the forces are acting at. If the moment

arms Li are the locations of the forces relative to the center of mass of the

body, the torque is F x Li, and the total torque T is given by:

T =Z F x Li (7.6)

The moment of inertia is a function of the axis T that the torque is exerted

about. The angular acceleration of the body is the total torque divided by

the moment of inertia:

T
A9 = T (7.7)

i(T)

and the new angular velocity is

Vo' = Vo+AAt
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The new orientation of the body is the previous orientation rotated about

the axis of V9 by an angle IVolAt. If the orientation of the body is described

by a matrix R then

R' = R Rot(V At) (7.9)

where Rot(VAt) is a transformation matrix that rotates by an angle of

|VoAt| about the axis V9.

7.1.1 Calculating Moment of Inertia

A sphere of uniform mass has the same moment of inertia for any axis of

rotation. Objects that are nearly spherical can have their moment of inertia

approximated to be a constant, independent of the axis of rotation, with

reasonable results.

Objects that are not very spherical, need to have their moment of inertia

calculated for each new axis of rotation. For example, it takes significantly

more torque to reach the same angular velocity when a pencil is rotated

from end to end then when it is spun lengthwise. If the mass distribution of

the object is approximated by a set of point masses, the moment of inertia

can be calculated for any axis of rotation. For a set of n point masses of

mass mi at relative position Li from the center of mass of the object, the

moment of inertia i about the axis unit vector T is given by:

i = E m(iT x Li) (7.10)
i=0
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A moment of inertia matrix could be calculated by finding the moment

of inertia as described above for the 3 primary axes. A matrix created from

these results could give the moment of inertia about any axis by multiplying

this matrix with the axis vector. In the current implementation this method

is not used. Instead the equation above is solved for each new axis.

7.2 Dynamic Simulation of Articulated
Figures

When rigid bodies are connected together into a network of joints and

links, the dynamic simulation of the system becomes much more complex

than that of a single body described above.

The dynamic equations for each link can be expressed which include

forces and torques from connected links, from centripital forces, coriolis

forces, and external forces. The equations from each link can then be

combined and solved for the acceleration of each joint [2,72,68]

There are several methods for solving the dynamic equations for the

joint accelerations [68,2]. Most methods are order N3 where N is the

number of links. An order N2 method has been developed that can pay off

for a large number of links, but it is slower for N = 6 [68]. A technique has

been described that approximates the dynamics for animation of articulated

rigid bodies in linear time [2].

The details of solving the dynamic equations are not discussed here
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since they were not used, refer to [68] and [21 for comparisons of methods of

solving dynamic equations and the use of dynamic simulation of articulated

figures for computer animation.

7.3 Generating Muscle Forces

Given a system that could simulate the dynamics of a system of joints and

links from a set of joint forces or torques, the problem is to generate these

joint torques that will produce a desired motion. This is a common but

difficult problem in robotic locomotion [10,16,48,49,51,27].

7.3.1 Inverse Dynamics

If a trajectory of a tip of a limb is known, the necessary joint forces to

create that trajectory can be found using inverse dynamics. This is a use-

ful technique in some situations such as robot control, but for computer

graphics animation it is usually not necessary, because the original trajec-

tory itself could more easily be used to position the limb tip with inverse

kinematics. However, it may be useful in calculating the forces and the

amount of energy required to produce a given trajectory.

7.3.2 Minimum Energy

In natural locomotion, it makes sense that movements would consume the

smallest possible amount of energy but still perform the desired result of self

transportation [1,3,8,19,20,22,36]. The energy used in natural locomotion

is roughly the sum of the energy used by each muscle. The energy used
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during natural locomotion is often measured by monitoring total oxygen

consumption. The energy used by muscles can be approximated by the

work done by them which equals the exerted force times time.

One could imagine a system that could be given a trajectory with some

constraints, and vary the trajectory within these constraints, until a mini-

mum energy trajectory is found. For example, a stepping foot should move

from one point on the ground to another point on the ground without

touching the ground in between. There are many trajectories that could

accomplish this, but the one of minimum energy is probably a fairly realis-

tic choice. The speed and path of the trajectory could be adjusted towards

a trajectory of lower energy, until a minimum is reached. The total energy

needed to produce this trajectory would be measured by the integral of

the joint forces over time. This would approximate the biological energy

needed to exert muscle forces to cause this trajectory.

When computing muscle forces, maximum allowable forces should also

be considered. In natural muscles there are physical maximum forces that

can be exerted, these limits should be obeyed to avoid motions that might

look unnaturally jerky.

7.4 Hybrid Dynamic-Kinematic Control

Dynamic control and kinematic control can be combined to avoid some of

the complex problems discussed above but still produce dynamically correct

looking motions. A jointed figure can be divided into sections, and each
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section controlled independently. Some groups of links can be controlled

dynamically, and some kinematically.

For example, in the work described in this thesis the legs of a figure can

be controlled kinematically, and the body can be controlled dynamically.

Given a trajectory of the body and trajectories of each foot, the legs can

be positioned with inverse kinematics, but the motion of the body of the

figure can be generated by a dynamic simulation with forces from the legs

and gravity acting on the body of the figure.

For some types of locomotion such as hopping, this method works well,

but for other types such as running, it can be difficult to determine what

forces from the legs will give a desired body motion.

Another example of hybrid dynamic-kinematic control, although this

one has not been implemented, would be to solve the dynamics for a single

swinging leg given a body path. When a leg first swings forward, the lowest

energy trajectory occurs when no joint forces are exerted. Each leg could

swing forward freely and at some point inverse kinematics could take over

to position the foot at its final destination. It would hopefully not be

necessary to consider the forces acting on the body from the swinging leg.

Hybrid dynamic-kinematic control has been used to generate the mo-

tions of hopping creatures. The motion of the body is determined using

dynamic simulation, and the motion of the legs is determined kinemati-

cally. Dynamic control has not been used in the generation of the motions

for walking creatures.
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Terrain

For legged locomotion to occur, there must be some kind of terrain repre-

sented such that the feet can be placed on it and support the figure. The

simplest type of terrain to represent, and the easiest to create locomotion

over, is a completely flat surface. Most animation of locomotion has been

done using flat terrain [13,14,12].

In the work described in this thesis, the terrain can be a complex surface,

and motions for locomotion are generated assuming arbitrary terrain shape

[see figure 8.3]. Terrain is used to create an environment that can be both

rendered, and sensed by the characters in it. Feet must be able to detect

when they have made contact with the surface of the terrain, so the height

of the terrain at any location must be calculated quickly.

8.1 Fast Surface Height Detection

The following method has been used to allow fast surface height calcula-

tions for bumpy terrains. Three dimensional objects used for terrain are
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constructed with regular arrays of polygons, either triangles or quadrilat-

erals. When the surface is initially created, the polygons of the surface are

stored in such a way that any horizontal world space coordinates, (x, zw),

can be quickly converted into polygon space coordinates, (X,, yp), by a sim-

ple transformation. If the surface object is transformed to a new position,

the inverse of this transformation is used to find the polygon coordinates.

The polygon coordinates determine a single polygon that is below (x, zw),

the heights at the vertices of this polygon are linearly interpolated to give

the exact polygon height at (X,, y,) [see figure 8.1]. Then this height is

transformed back to world space by the surface object's position matrix to

give the height, yw, of the surface in world coordinates.

(xO, yO)

(Xl, yl) X(xr, yr)
(xp, yp)

(x1, y1)

(x2, y2)

figure 8.1, polygon interpolation
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8.2 Forbidden Zone Detection

One of the many skills involved in natural locomotion, is the detection of

bad footholds. Consider the perception involved in walking quickly over a

rocky beach. Humans can distinguish between acceptable and unacceptable

foothold locations at incredible speeds, just by looking at the terrain [69].

Fortunately, computer graphics doesn't need to use vision techniques to

find acceptable footholds. The representation of the terrain can be directly

used to allow distinction between good and bad foothold locations.

Given an unstepable slope value, and a foot-radius, the forbidden zones

can be defined. Any area on the terrain within one foot-radius down hill of

an unstepable slope will not make an acceptable foothold [see figure 8.2]

figure 8.2, Bad Foothold Locations

Forbidden zones
Safe zones

Foot radius 4
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figure 8.3, Example of Terrain Used
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Locomotion

There is an incredibly large variation in methods that creatures use to

transport themselves. They can be categorized to some degree but each

category still has its own significant variations. Flying, swimming, walking,

running, hopping, crawling, galloping, and trotting, are some examples of

names for categories. Walking alone has many variations that are important

to be able to create in a complete animation system. The style of walking

can express a lot about a characters personality or mood.

9.1 Locomotion Parameters

Different styles of locomotion must be represented in a way that an anima-

tion system can interpret and attempt to generate motions for them. There

is no obvious set of locomotion parameters that can describe all styles of

locomotion. Given a large set of parameters, some may be necessary to to

specify sometimes and others at other times, and many parameters should

often be calculated automatically or defaulted.
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For example, the locomotion parameters for walking might be:

1. Gait

2. Stride cycle time

3. Speed

4. Bounciness

5. Body height above the terrain

Some different parameters might apply for a hopping (or pronking) style of

locomotion:

1. Jump distance

2. Jump height

3. Crouch height

4. Speed

There may be constraints between some of these locomotion parameters

because they are not independent. In the set of locomotion parameters

given above for hopping, jump height, jump distance, and total speed are

dependent on each other. Speed and gait are often related, some gaits look

funny at certain speeds.
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9.2 Gaits

Representations for gait patterns of legged creatures have been proposed

for many years [40,19]. There is a tradeoff in representing gaits between

the amount of specific gait information contained in the representation and

the ease which a gait can be described and represented visually. Muybridge

[40] used a diagram that described only the order of foot placement:

1 3 4 5 6 7 8 I

figure 9.1, walking and galloping

Other representations give the relative timings for placing and lifting

of each foot. In figure 9.2, the horizontal dimension represents time, black

indicates when the foot is in contact with the ground.
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figure 9.2

Trot Pronk

LF
LR
RR
RF

LF
LR
RR
RF

Wave gait

Li
L2
L3

R1
R2
R3

In this work, it was important for the gait representation to be specific

enough that exactly timed motions of the legs and feet could be generated.

The parameters used to describe a gait are the times that each foot is lifted

up and placed down, and the total gait cycle duration time. The foot-up

and foot-down times are stored as times relative to the gait cycle (from 0.0

to 1.0). The phase of the gait cycle is increased as the jointed figure walks

along.

Using this representation the gait can easily be sped up or slowed down
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by only changing the cycle time parameter while the gait pattern remains

unaffected. The speed of a gait may want to be adaptive to the terrain,

a creature might automatically slow down and take shorter steps when

climbing up hills, or speed up and take longer steps when traveling down

hills.

9.3 Planning Trajectories

When creating motion for locomotion, trajectories for both the body of the

figure, and for each foot of the figure must be generated. A trajectory can

be planned or not planned. A planned trajectory might be used when the

destination of the trajectory has some constraints. If a hopping creature

wants to avoid tripping over obstacles, it should plan a trajectory for its

body that will be clear of any. If a walking creature wants to avoid step-

ping into ditches or stubbing the terrain with its feet, it should plan the

trajectories of its feet so they avoid protrusions and have safe destinations.

The next chapter contains some details on planning foot trajectories.

9.4 Not Planning Trajectories

There are many circumstances where it may be reasonable to not plan

trajectories. Forces can be applied and the trajectories can be calculated

incrementally with dynamic simulation. Besides the fact that dynamically

correct trajectories can often be difficult to predict and plan, natural loco-

motion probably does not always involve careful planning. When we walk
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or run, we get used to the "rhythm" of it, and don't have to carefully place

each foot. Real creatures and humans sometimes don't plan trajectories as

well as they should and they can trip and fall.

Unplanned trajectories can still be somewhat adaptive to complex ter-

rain. For example, a creature may jump into the air not knowing where

it will land, but when the creatures legs first touch the ground, they exert

the necessary forces to cause a gentle landing on the surface.

If our creature is just learning to walk, or if a creature encounters an

unusual change in height of the terrain, it may fail to stay upright. With

unplanned trajectories this can actually happen, creatures have been ani-

mated that have tripped and fallen over when a severe bump in the terrain

was encountered.
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Walking

A figure transporting itself in such a way that at least one foot is always

on the ground will be considered to be walking. Since the body is always

supported by at least one leg when walking, it is never in free flight. Walking

is probably the easiest style of locomotion to generate motion for, since

the movements of both the body and the legs can be approximated with

kinematic techniques that do not involve extensive dynamic considerations.

The problem of generating walking motion is divided into two parts:

calculating the body trajectory, and calculating trajectories for the feet.

Once the body and feet trajectories have been chosen, the leg joint angles

that give the desired foot positions from the body location can be easily

determined using inverse kinematics.

The timing of the trajectories of the feet is determined by the gait

information and the phase of the gait cycle time. The body path can also

be affected by the gait cycle phase.
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10.1 Body Path

There are several options for types of body paths for walking figures. The

body can move along a simple straight line, this creates what is known

as the refrigerator look [13). A linear body path is also not sufficient for

walking over complex terrain, when a figure reaches a small hill, the body

would just ram into it.

A body path can be adaptive to the terrain. It can translate up or

down depending on the terrain height, or it can pitch forward and back

depending on the slope of the terrain. The slope of the terrain could also be

used to adjust the speed of the gait. This allows figures to walk over uneven

surfaces, but the body motion still often looks too smooth or mechanistic.

A body path can be affected by the gait cycle phase. The body should

bounce up and down slightly as the figure exerts forces with its feet. A

cyclic spline curve can be used whose phase depends on the gait cycle time

and amplitude is the bouciness of the figure. When the effects from the gait

cycle phase and the terrain height and slope are combined to determine a

body path, a lively looking walking motion can be produced that is adaptive

to the terrain.

10.2 Feet Trajectories: Step Planning

The gait of a walking figure determines when each foot is lifted up and

placed down. When the gait cycle phase reaches a foot-up time, a new
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trajectory that will bring it to its next foothold location must be planned

automatically for that foot. A foothold position for the next contact is

found, and a path leading to that foothold that will avoid collisions with

any protrusions in the terrain is determined. The flight of the foot along

this path is timed so that the foot lands according to the foot down time

of the gait. Here is the process for planning a step trajectory from one

foothold position to the next:

1. Find the foothold location at the desired distance and direction.

2. If that is a bad foothold location, find the farthest good foothold

location that is closer than that.

3. Find the maximum terrain height between the current foothold and

the new foothold.

4. Create a trajectory with a spline curve that clears that height.

figure 10.1, path over protruding obstacle
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Once the body path and feet trajectories have been determined for a

walking figure, the body can be positioned at the proper location for each

frame of the animation, and the feet are positioned at the position in their

world coordinate trajectories using the inverse kinematics techniques de-

scribed in chapters 6 and 7.

10.3 Automatic Gait Assignment

Two generalized types of gaits can be automatically assigned to a jointed

figure with any number of legs: a "trot" or a "wave gait". A "trot" will give

the standard trot for quadrupeds, a tripod gait for hexapods, or a normal

walk for bipeds. A "wave gait" will give the usual wave gait in creatures

with greater than four legs, a bound for quadrupeds, or a hopping gait for

bipeds.

The legs of a jointed figure are separated into left and right sides, and

then sorted from front to back. The foot-up and foot-down times are de-

termined for the left and right side independently, so the wave gait will be

adaptive to missing limbs.

In figure 10.2 the frames from a sequence of animation have been com-

posited in an attempt to show the walking motions that can be generated.
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figure 10.2, examples of walking
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Pronking

Pronking is a type of locomotion where all the feet contact the ground

simultaneously, and leave the ground simultaneously. Pronking could also

be called hopping or jumping. Pronking is common in some bipeds such as

kangaroos, and is sometimes performed by quadrupeds such as antelopes

or gazelles [19].

Pronking has been simulated for arbitrary jointed figures that have been

created with the figure editor described previously. The gait cycle for pronk-

ing has only two states: flight phase and support phase.

Since pronking is simulated on uneven terrain, the landing time of all

the feet is usually not quite simultaneous. A gait will be considered to be

in support phase only when all the feet have made contact with the ground.

For the purposes of simulation, the support phase will be divided into two

phases, the landing phase and the pushing phase, so the entire gait cycle

will have three phases:

1. Flight phase
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2. Landing phase

3. Pushing phase

The path of the pronkers body is determined using dynamic simulation.

During flight phase, gravity causes a constant acceleration of the pronker

toward the ground causing a smooth parabola. During landing phase and

pushing phase the legs exert forces on the body at the hips that cause the

pronker to decelerate and push off for the next jump. For details of the

dynamic simulation techniques used, refer to the section about dynamic

simulation of single bodies in the chapter on dynamics.

figure 11.1, Pronking Biped and Pronking Quadruped

Inverse kinematics is used to determine the leg joint angles that position

the feet at given foothold and swing trajectory locations when the body

position is known.
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The transitions between the three phases are determined by specific

events that allow pronking to be adaptive to uneven terrain. The transition

between flight phase and landing phase occurs when all the feet of the

pronker contact the ground. The transition between landing phase and

pushing phase occurs when the pronker reaches a vertical velocity of zero.

And the transition between pushing phase and flight phase occurs when

any of the pronkers feet leave the ground, or when the pronker reaches the

desired jumping velocity.

11.1 Flight Phase

During the the flight phase, as each foot can not reach the ground anymore,

it is given a trajectory relative to the pronkers body that will swing it

forward for the next landing. The total flight time is estimated from the

current vertical velocity vyo. If we assume the final velocity v, will be equal

but negative of the current velocity, the total flight time At1 can be found

as follows:

vyi =-vyo(11.1)

vyi =- vyo + g Aty (11.2)

At 1 = 2vYo (11.3)
g

This Atf is used to determine the duration of the trajectories for the feet

from their current positions to their final positions relative to the body.

These paths are specified with three spline points, the center one is slightly
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higher then the two endpoints so the leg moves toward a relaxed position

when the pronker is ascending, and extends forward for the next landing

when the pronker is descending.

During each simulation iteration of the flight phase, the feet are tested

for for intersections with the terrain. If any foot does intersect the terrain,

the point on the surface of the terrain is stored and becomes the foothold

location for that foot during the landing and pushing phases.

11.2 Landing Phase

The landing phase is initiated when all the feet of the pronker have made

contact with the ground. During the landing phase each leg exerts a con-

stant force on the body to absorb the vertical momentum. The crouch

height ye is the locomotion parameter of a pronker that describes the pre-

ferred height above the terrain that the pronker should reach zero vertical

velocity at.

A strategy used to find the appropriate leg forces in both the landing and

pushing phases will be to first determine a desired change in velocity, AV,

and a desired change in height Ay. From the vertical change in velocity

AV, and Ay the necessary time duration, At, can be found. Then the

accelerations and forces that will give the desired change of each component

of AV in that time duration can be found.

For the landing phase the desired vertical velocity is zero, so if the the

initial landing vertical velocity is voo, then
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AVY = -VYO (11.4)

If the initial landing height is yo and the desired crouch height is y, then

Ay = Yo - Yc (11.5)

From these we can find the necessary At:

Ay = f vYdt (11.6)

since the acceleration will be constant, velocity will change linearly and

A y- =VY0 + vy1 'At
2

At 2Ay
V0 + V1

(11.7)

(11.8)

Next the force vector F that will give the desired AV in this At will be

found. The change in velocity is related to the acceleration, A, by

AV = fAdt (11.9)

Again, since the acceleration will be constant

AV = AAt (11.10)

(11.11)
AV

A =
A t

Finally, to find the forces that will give these accelerations we also need

to compensate for the mass of the pronker m, and the effect of gravity:
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F = m(A - G) (11.12)

where G is the gravity acceleration vector.

This total force is split up equally amongst the legs of the pronker. If

each of n legs of a pronker exerts a force of F/n during the landing phase,

then the pronker should reach the desired crouch height with a zero vertical

velocity. If the center of mass of the pronker is also the centroid of the hip

positions, then these forces will not produce any torque and the pronker

should remain level. Each leg has a maximum force that it can not exert

more than. If the desired force exceeds the maximum the leg will exert the

maximum instead, and the pronker will crouch below the desired crouch

height and might even hit the ground. This will happen if a pronker jumps

off a sharp incline or is dropped from a height beyond the normal jumping

height.

11.3 Pushing Phase

The pushing phase is initiated when the vertical velocity reaches zero during

the landing phase. The pushing phase is similar to the landing phase in

that a constant force is exerted by the legs to cause a desired change in

velocity within a certain change in height. In the pushing phase the final

velocity V1 will determine the trajectory for the following flight phase, it

will determine where the pronkers next landing location will be and how

high the pronker will jump. This desired final velocity is calculated from
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the desired jump height and jump distance of the pronker.

The estimated time duration between liftoff and the maximum height,

Atf/2 can be found using the desired jump height, Ayj as follows:

Ayj = gAtf2  
(11.13)

At 2  2Ay (11.14)
g

If Jz and J, are the desired horizontal jump distances, then the velocity that

will produce the specified jump is

2Atf/ 2

V1  -gAt (11.15)

L 2Atf/ 2 J

The desired jump distances could be calculated by specifying the next

landing location. The jump height could also be calculated by specifying

the jump distance and the total pronker speed.

If the current pronker velocity is Vo then the change in velocity that will

produce the desired jump is

AV = V1 - VO (11.16)

If the estimated maximum height that all legs will still reach the ground is

y1 and the current height is yo then

A Y = Y1 - YO (11.17)
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From here, the same equations given above for the landing phase can be

used to give a constant force vector F that can then be divided up amongst

the pronkers legs to give the desired liftoff velocity. When this velocity is

reached or when any of the pronkers legs can not reach the ground anymore,

the flight phase begins and the cycle repeats.
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Bouncing

Consider the cycle of a bouncing object. As an object above a surface falls,

it's potential energy is transformed into kinetic energy. When the object

hits the surface, the materials of the surface and the object deform and the

kinetic energy is transformed into potential energy due to the springiness of

the materials. Then the materials spring back and push the object back up

into the air as kinetic energy again. If the surface is assumed to have infinite

mass, its velocity and therefore its kinetic energy will remain at zero. If no

energy is lost, the collision is called elastic, and the object would bounce

back to its original height. If the object looses energy on each bounce the

collision is inelastic.

12.1 Bouncing in One Dimension

First a model will be proposed for an object bouncing up and down in one

dimension. We can describe the elasticity of an object as the percent of

kinetic energy lost, or the ratio of the kinetic energy before and after a
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bounce. An object with mass m has a kinetic energy:

Ke = 1m2 (12.1)
2

If the object has an initial velocity vi and a final velocity v2 the kinetic

energy ratio E, is:

moi (v 2

E,. = 2 (12.2)
mv2 V2

For a rubber ball this might be 0.8 or for a baseball around 0.2. This

kinetic energy ratio also equals the ratio between successive heights the

objects bounces. The kinetic energy at the point of zero height equals the

potential energy at the point of zero velocity and maximum height, and

potential energy E, is proportional to height h:

E, = mgh (12.3)

So if there is no air friction:

vi V,2 -hiEr (12.4)
V2 h2

Notice that the kinetic energy ratio is simply the square of the momentum

ratio, or the velocity ratio. I will use this momentum ratio, call it b, to

describe the bounciness in calculations just because it is slightly simpler

than the energy ratio.

b - MIVi1 - - = VE (12.5)
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12.2 Simulating Bounces with Surface Forces

When a collision of an object with a surface is detected, forces can be

applied to that object for a certain amount of time At that cause it to

bounce away from the surface. If the simulated object and surface are rigid

or non-deformable, a bounce should happen instantaneously as soon as the

object contacts the surface, and At should equal the time duration of a

single simulation iteration. If the object or the surface is deformable, then

the bounce should have more duration, At should be larger, and the force

to give the bounce will be applied for more than one simulation iteration.

If the velocity ratio or bounciness b of an object is known the desired

change in velocity AV can be found:

Av = v2 - vi = -vib - vi = -vi(b + 1) (12.6)

Then, the force needed to achieve this change in linear velocity for a given

At can be found:

AV = aAt (12.7)

a =-- + g (12.8)
m

Av = ( +g At (12.9)
m

solving for f gives:

f=m ( -tg) (12.10)
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and finally substituting:

f =-m (vi(b1) +g (12.11)

In summary, if this force f is exerted on an object moving at velocity vi with

bounciness b for a duration of At in the direction away from the surface,

the object should bounce realistically.

12.3 Bouncing in Three Dimensions: A Model
for Polyhedral Object Bouncing

To simulate bouncing in three dimensions, The velocity of the vertex

contacting the surface is separated into two components: one normal to

the surface and one tangent to it. The velocity normal to surface is used

to calculate the bounce force from the surface as in one dimension. The

tangential component could be used to calculate friction, but is not in the

current implementation.

When a polyhedral shape bounces on a surface, the force from the vertex

contacting the surface is usually not aligned with the center of mass. The

bounce will cause a torque to be exerted on the object as well as a linear

force.

The kinetic energy of an arbitrary vertex of a polyhedron is more diffi-

cult to calculate than in the one dimensional case, because angular velocity

and moment of inertia are involved as well as mass and linear velocity. How-
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ever, the bounciness or desired velocity ratio can still be used to calculate

a force that will cause the polyhedron to bounce on that vertex.

As shown above for linear bounces, a force normal to the surface can be

calculated that will give a desired change in velocity for a given At. The

contact velocity of a vertex that is at L relative to the center of mass of

the polyhedron with translational velocity V and angular velocity V is

V1 = V + (Ve x L) (12.12)

If the normal of the surface is N then the normal velocity component and

the bounciness b give the desired scalar change in velocity in the normal

direction is.

Av = -Vi -N(1 + b) (12.13)

The strategy for finding the force that will cause the desired Av will be

to relate the acceleration and then Av to a force F in the surface normal

direction, and then solve the resulting equation for for the force magnitude

f.-

F f N (12.14)

Acceleration of the vertex in the surface normal direction will be caused

by both the translational and rotational effects of F on the polyhedron.

The acceleration in the normal direction of the vertex due to polyhedron

translational acceleration, with gravity G, is
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at= f/m+N-G (12.15)

The moment of inertia i about the axis L x N is found as described pre-

viously, and the acceleration of the vertex due to polyhedron rotational

acceleration is found:

ape = N - (L x f N x L)/i (12.16)

Then, the two accelerations above are summed and Av in the surface nor-

mal direction is related to f:

Av = aAt (12.17)

Av = [N - (L x fN x L)/i + f/m+ N -GI At (12.18)

Finally, solving for f gives:

AV/At - N -G
f = , (12.19)

N - (L x N x L)/i + 1/m

So, if the force described by this final equation is exerted at the vertex at L

over a time At, the polyhedron should bounce with reasonable rotational

and translational dynamic accuracy.
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Sound

An intelligent animation system that provides efficiency in creating struc-

ture and motion, should also provide some efficiency in creating the related

sound track. Complex structures can generate many sounds at very specific

times. It should be easier for an animation system to generate these sounds

than it is to create the sounds independently and then attempt to synchro-

nize them to the animation. The animation system described in this thesis

can detect and record the exact times of sound producing events.

13.1 Sound Events

A sound event description produced by the animation system contains the

following information.

1. The frame number of the sound event.

2. Information about what caused the sound.

3. The location of the sound.
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Sound events are created and collected when the frames of an animation

are being generated. This information is then processed into MIDI time

codes, where each sound event produces a note of arbitrary complexity. The

frame number of the sound event determines the exact time of the note.

The information about what caused the sound event, is used to determine

the pitch and quality of the note. The location of the sound event could be

used to affect the stereo balance and loudness of the note.

Each object in an animation may produce a specific type of sound, or

the qualities of the objects could be used to determine the pitch and quality

of the sound.

There are two categories of detectable sound events: collisions between

objects, and motion of objects.

13.1.1 Collisions

An obvious example of a sound producing event is when two objects collide

with each other. Falling objects can produce sounds when they bounce

on a surface. As a creature walks or hops, each footstep can be detected,

and sounds are produced as each foot makes contact with the terrain the

creature is walking on. An example that would produce a lot of collision

sound events would be a pile of wooden blocks crashing over. Inter object

collisions as well as objects hitting the floor would each produce a wood

like clunk, that together would give a crash.
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13.1.2 Sounds from Motion

Sounds such as squeaks, squawks, whistles, swooshes, blorps, boings, and

others that are difficult to describe, can all be caused by motions of objects

that may not involve collisions. Some of these sounds, although rare in

reality, are very useful in creating desired effects in animation. Bending

joints can cause squeaks or squawks, objects speeding through the air could

cause swooshes or whistles, and creatures pushing off the ground for a jump

might cause boings.
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Conclusion

In summary, an animation system has been built that allows animation

of arbitrary jointed-figures over uneven terrain with forbidden footstep lo-

cations. An interactive jointed figure editor is used to efficiently create

creatures, that are analyzed to determine what parts are legs, body, head,

or tail. Motions can be automatically generated of these creatures walking

or pronking adaptively over the terrain.

Levels of motion representation have been built to create the complex

motions of adaptive locomotion. Jointed figures are represented by a net-

work of connected joints and links. Joints are initially described by their

axis and position in a creation coordinate frame, and the links that they

connect.

Forward kinematics or inverse kinematics can be performed on the limbs

of a jointed figure. The pseudo-inverse of the jacobian matrix is used to

solve the inverse kinematics problem iteratively on arbitrary limbs.

Dynamic simulation of single rigid bodies has been implemented and is
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used to determine the body trajectory of pronking figures and the trajec-

tories of bouncing polyhedra.

The terrain is represented in a way that allows fast surface height cal-

culation and forbidden zone detection.

Locomotion parameters such as gait, bounciness, speed, and jump height,

can be adjusted to vary the style of locomotion. Walking motions for

jointed figures can be generated with arbitrary gait patterns using inverse-

kinematics and step planning. Pronking can also be generated using dy-

namic simulation and inverse-kinematics.

Two other abilities of this animation system have been described, al-

though they are not directly related to locomotion. Dynamic simulation

and surface forces have been used to model bouncing polyhedra with linear

and angular velocities. Sound event data can be recorded by the animation

system for use in creating a well synchronized sound track.
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Miscellaneous

A.1 Jointed Figure Editor Details

Here are some details not given in chapter 4 of the user interface that allows

creation of jointed figures.

The interactive environment used for creating jointed figures consists

of a menu of operations that can be chosen with a mouse, and a mouse

sensitive area of the screen that allows drawing nodes and connections.

Axes of the figure coordinate system are drawn in dotted lines so the figure

can be aligned. The axes are sticky to allow perfectly straight legs: if a

node is created near an axis it will be placed exactly on the axis.

Nodes that have been created are mouse sensitive, a temporary circle

appears around them to indicate they are selected when the mouse is over

them. A fair amount of functionality was needed from a mouse with only

three buttons, so the function of each button depends on whether the mouse

is over an existing node or not, and whether a connection between nodes

has been initiated but not completed.
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Below is a summary of the functionality of the mouse buttons for each

possible state. The left button of the mouse will create a new node and

a loose connection. A loose connection will cause a rubber band line to

be drawn from the node to the cursor. This loose connection will form a

complete connection with the next node created or clicked on. The middle

button will create a new node without a connection, or it will delete an

existing node if the cursor is on one. The right button will abort a loose

connection.

No loose connection Loose connection
Not over existing node Over existing node Not over existing node Over existing node

Left create node and no effect create node and complete connection
loose connection complete connection

Middle create node delete node create node and complete connection

I complete connection

Right no effect no effect abort connection abort connection

The menu items allow the user to select a set of nodes that have been

created and then perform operations on that selected set of nodes.

There are several methods for choosing a selected set of nodes. When a

set of nodes is selected, those nodes and the connections between them are

highlighted. The methods for choosing the selected set of nodes are:

1. Select all. This simply sets the selected set to include all nodes that

have been created.

2. Unselect all. This sets the selected set to be empty.

3. Reselect a previously selected set. This loops through a ring of previ-

ously selected sets.
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4. Circle new set with mouse. This allows the user to draw an arbitrary

closed shape with the mouse. Any nodes that are inclosed by this

shape become part of the new selected set. [See the next section of

the appendix for determining the nodes inclosed by the shape.)

The selected set of nodes can then be operated on in several ways. It

can moved or copied to a new position using a variety of transformations.

Delete will remove the entire selected set and any connections attached to

it. An undelete option will bring back the previously deleted set.

For any transformation the selected set can be moved to a new posi-

tion, or copied to a new position, depending on which of move or copy is

selected. One or the other is always selected [see figure 4.1]. The transfor-

mations available are translate, rotate, rotate absolute, scale, scale x and y

separately, mirror X, and mirror Y.

A.2 Shape Enclosure Test

This is an easy way to determine if a point (pzpy) is inside or outside an

arbitrary complex 2-D shape. The shape may be concave, and it may be

clockwise or counterclockwise. If the shape is defined by a set of n points

(Xi, yi) where the first point is repeated as the last one, and atan2(y, x)

gives the angle for any y and x, then

Asum = [atan2(yi+1 - py)(xi+1 - px) - atan2(y - py)(xi - pz)} (A.1)
i=O
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The angle sum should be either 27r, 0, or -27r. If the angle sum is 27r

or -27r the node is enclosed by the shape, if the angle sum is 0 it is not

enclosed.

A.3 Rotating about an Arbitrary Angle

Given an axis vector A = (ar, ay, az), and a rotation angle 0, a matrix

R can be created that will cause a rotation about A by the amount of 0.

First the axis is converted into spherical coordinates by finding atan(ay)

and atan(ax/az). Then a rotation matrix Q is created with these spherical

coordinates that will transform that axis to a point on the z axis. The

inverse will transform the point from the z axis back to A, and since Q is

orthonormal, Q-1 = QT, which is much easier to compute. If a rotation

about the z axis is described by the matrix Z(O) then:

R = Q T Z(O)Q (A.2)

If rotation is repeatedly done about the same axis, Q and QT could be

saved to increase efficiency.
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The Pseudo-inverse

In this chapter, the pseudo-inverse for inverse kinematics is outlined. Meth-

ods for achieving secondary goals of singularity avoidance, avoiding joint

limits, and obstacle avoidance are briefly described, and some methods for

combining secondary goals are discussed. Most research of pseudo-inverse

techniques has been done for the purpose of controlling robot manipulators.

The same techniques apply directly to applications in computer graphics.

An inevitable problem in robot control is that of finding the joint be-

haviors from a cartesian task description of tip or end effector. For many

manipulators direct inverse kinematics is possible and the joint angles 0 can

be calculated from a desired end effector position x. If a manipulator has

more degrees of freedom than the dimension of x, it is called redundant, or

underdetermined, and 6 can not be calculated directly.

A common method for reaching a desired end effector position in re-

dundant manipulators is using incremental velocity control. Although the

joint velocities 6 that give a desired end effector velocity i are not neces-
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sarily unique, the solutions can be found using pseudo-inverse techniques.

The velocities towards intermediate positions x of the final position are

repeatedly calculated, and the corresponding joint velocities are updated

[see figure 6.1].

B.1 The Jacobian

The Jacobian, J, is the matrix of partial derivatives that describes the

change in cartesian coordinates due to the change in each joint angle [See

chapter 5]. J is a function of the arm's structure and current joint angles.

For a vector of joint velocities 0, the vector of cartesian velocities i is

given by

J (B.1)

The desired form of this relationship is

b = J-1± (B.2)

that is, given a desired cartesian velocity, find a joint velocity. But J-1

is only defined when J is square and non-singular. When a manipulator

is either overdetermined or underdetermined J is rectangular. If z is m

dimensional, and b is n dimensional, J is an m x n matrix. In the case of

redundancy there are a range of b that satisfy i = JA. The smallest b that

satisfies this equation is given by
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b=J+± (B.3)

where smallest refers to the minimum norm solution, and J+ is the pseudo-

inverse of J. For redundant situations, the pseudo-inverse of J can be

calculated by

J+ T(jjT)-1 (B.4)

Clever methods of computing J+i without actually computing J+ itself,

such as using LU decomposition, have been pointed out [15], the method

used in this work was developed by [58] and implemented by Alejandro

Ferdman [9].

The null space of J, N(J), contains all the vectors Od that map into

± = 0, that is, J, = 0. They are called the homogeneous solutions. For

a given ± we can add any O, in N(J) to the minimum norm solution, and

the resulting b will still give the requested i.

b = J+± + e' (B.5)

Any vector z in b space, can be projected onto N(J) by the projection

matrix (I - J+J). So,

b = J+± + (I - J+J)z (B.6)

for all z, describes the sub-space of b space that satisfies A = JO. This

sub-space is parallel to N(J) since it is just N(J) offset by the minimum
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norm solution. For a given z, the resulting 0 will be the minimum norm

solution combined with the closest vector to z that does not change the

corresponding i [see figure B.1].

I-

J x

J- +(I -*) z,
zI

figure B.1

B.2 Secondary Goals

a

Some secondary goals, such as avoiding singularities, and avoiding joint

limits allow a single desired joint velocity z to be calculated and used. For

these cases the formula above can be used. A gain coefficient a can be

added to give a variable weight to the secondary goal [see figure B.2).

b = J+± + a(I - J+J)z (B.7)
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figure B.2 a= 0.5

If some function measures the desirability of an arm configuration, the

gradient of this function gives the best value of z. For singularity avoidance

this function measures the dexterity, or how able the arm is to move in

all directions. Near a singularity the dexterity approaches zero. Much

work has involved evaluating different methods for measuring manipulator

dexterity and its gradient as a function of 0 [24,41,74]. If there is a set of

preferred joint angles for the manipulator, z could be simply the difference

between the current and preferred joint angles.

If Zd is the desired total joint velocities, as opposed to velocities to be

added to the minimum norm solution, then

Z = Zd - J+±, (B.8)

=J+ + a(I - J+J)(zd - J+i) (B.9)

Other secondary goals such as obstacle avoidance, can have a range of

acceptable joint velocities. When this range is projected onto the sub-space
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of the primary goal solutions, an intersection space is possible, signifying

some remaining redundancy [see figure B.3].

i-7

figure B.3

If a certain link is too close to an obstacle, it should move away from it if

possible. The joints between that link and the end effector have no effect on

moving that link. Another Jacobian J0 describing the arm up to that link,

and the cartesian velocity io that moves that link away from the obstacle

can be used to give another sub-space of a space. The intersection of these

sub-spaces correspondes to all 6 that satisfy both i = Ja and ., = JoO.

Some of these projections, and intersections are formulated in [24,28,29,41].
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B.3 Combining Goals

A set of goals can be combined using prioritization, weighting, or by a

mixture of the two. Goals with ranges of equally acceptable solutions lend

themselves to prioritizing, while goals that give a single preferred solution

are better suited to being weighted.

Prioritizing causes a goal of lower priority not to lower the measure of

success of any goal of higher priority. Each sub-space is projected onto

N(J) in turn until the redundancy of the arm is used up [291. This works

well if the manipulator is highly redundant, but if there are few degrees of

redundancy, and many prioritized goals, the lowest priority goal may never

be considered. Once the redundancy is used up no lower priority goals have

an affect.

Weighting is equivalent to combining several goals into a single goal that

changes focus as the arm configuration changes. When secondary goals are

weighted, they can affect each other. A method of performing weighted

control would be to combine several desired joint velocities zi each with

a weight wi, to give a final vector z. Both zi and wi would probably be

functions of 0.

Z - W1Z1 + W2 Z2 + W 3 Z3 ... (B.10)

Weighting should be useful when several goals are similarly important, but

each only necessary at certain arm configurations. It allows each goal to

have an effect sometimes, even if the degree of redundancy is low. Groups
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of weighted goals could be prioritized absolutely as above.
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