306 research outputs found
Non-Relativistic QCD for Heavy Quark Systems
We employ a nonrelativistic version of QCD (NRQCD) to study heavy
quark-antiquark bound states in the lowest approximation without fine
structure. We use gluon configurations on a 16^3 by 48 lattice at beta=6.2 from
the UKQCD collaboration. For quark masses in the vicinity of the b we obtain
bound state masses for S, P and both types of D wave. We also detect signals
for two types of hybrids (quark,antiquark,gluon states). The results are
sufficiently accurate to confirm that the values of the D wave mass from both
lattice D waves coincide indicating that the cubical invariance of the lattice
is restored to full rotational invariance at large distance.
Our results also show that the S-P splitting is indeed insensitive to
variations in the bare quark mass from Ma=1.0 to Ma=1.9.Comment: 13 pages, DAMTP-92-7
Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)
The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance of the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20% of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. All experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations
A novel two-laser interface for coupling capillary electrochromatography with ion-trap time-of-flight mass spectrometry
An interface has been developed for the hyphenation of capillary electrochromatography (CEC) with mass spectrometry (MS). Chromatographic eluate vaporization and selective analyte ionization occur within a quadrupole ion-trap, which permits significant instrument simplification when compared with the atmospheric pressure interfaces typically used for CEC-MS. Vaporization is achieved using laser desorption at 1064 nm while ionization is accomplished through UV photoionization. This two-step approach, through ionization laser wavelength selection, can provide ultratrace analysis with high selectivity. The mass spectrometer is a hybrid ion-trap time-of-flight (TOF) instrument in which the ion-trap is used in radio frequency-only mode, with DC-pulse ejection, to provide decoupling of the different timescales required for CEC separation and TOF mass analysis. The ion-trap is capable of accumulating ions over multiple laser shots. The mass resolution of the demonstration instrument was circa 1500. Preliminary CEC-MS runs have been recorded for mixtures containing polycyclic aromatic hydrocarbons. A concentration detection limit of 500 nM, for naphthalene in acetonitrile, has been determined for the interface
Effects of Cooking in Solutions of Varying pH on the Dietary Fiber Components of Vegetables
To study the effect of pH on dietary fiber components of vegetables, beans, cauliflower, potatoes, peas and corn were cooked in buffers of pH 2, 4, 6, and 10. Water-soluble pectin and hemicellulose, water-insoluble pectin and hemicellulose, cellulose and lignin were quantitated in raw, cooked vegetables and cooking medium. Tenderness and pH of raw and cooked vegetables were determined. Texture varied with cooking medium. Cooked vegetables were most firm at pH 4 and softest at pH 10. Dietary components found in cooking medium reflected these textural changes. Vegetables which showed greater pH effects exhibited greater changes in fiber components.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73821/1/j.1365-2621.1984.tb13237.x.pd
Has the evolution of complexity in the amphibian papilla influenced anuran speciation rates?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72375/1/j.1420-9101.2006.01079.x.pd
Superdeformed band in 155Dy: Where does the "island" of superdeformation end?
A superdeformed band of 15 transitions has been found in the 155Dy nucleus. The measurement was performed with a backed target and the large deformation was inferred from the measured Doppler shifts. The new band displays an intensity pattern much different from typical superdeformed bands in this mass region. The dynamic moment of inertia is essentially identical to that of band 1 in 153Dy and is somewhat larger than those of the yrast superdeformed bands in 152, 154Dy, suggesting that the associated configuration has an additional N = 7, j15/2 intruder orbital occupied with respect to the 154Dy core
Comparison of Urban Air Quality Simulations During the KORUS‐AQ Campaign With Regionally Refined Versus Global Uniform Grids in the Multi‐Scale Infrastructure for Chemistry and Aerosols (MUSICA) Version 0
Model intercomparison studies often report a large spread in simulation results, but quantifying the causes of these differences is hindered by the fact that several processes contribute to the model spread simultaneously. Here we use the Multi-Scale Infrastructure for Chemistry and Aerosols (MUSICA) version 0 to investigate the model resolution dependencies of simulated chemical species, with a focus on the differences between global uniform grid and regional refinement grid simulations with the same modeling framework. We construct two global (ne30 [∼112 km] and ne60 [∼56 km]) and two regional refinement grids over Korea (ne30x8 [∼14 km] and ne30x16 [∼7 km]). The grid resolution can change chemical concentrations by an order of magnitude in the boundary layer, and the importance increases as the species' reactivity increases (e.g., up to 50% and 1,000% changes for ethane and xylenes, respectively). The diurnal cycle of oxidants (OH, O3, and NO3) also varies with the grid resolution, which leads to different oxidation pathways of volatile organic compounds (e.g., the fraction of monoterpenes reacting with NO3 in Seoul around midnight is 90% for ne30, but 65% for ne30x16). The models with high-resolution grids usually do a better job at reproducing aircraft observations during the KORUS-AQ campaign, but not always, implying compensating errors in the coarse grid simulations. For example, ozone is better reproduced by the coarse grid due to the artificial mixing of NOx. When developing new chemical mechanisms and evaluating models over urban areas, the uncertainties associated with model resolution should be considered. © 2023 The Authors. Journal of Advances in Modeling Earth Systems published by Wiley Periodicals LLC on behalf of American Geophysical Union
Q methodology and rural research
Traditionally, rural scholarship has been limited in its methodological approach. This has begun to change in recent years as rural researchers have embraced a range of different methodological tools. The aim of this article is to contribute to greater methodological pluralism in rural sociology by introducing readers to a method of research that is rarely engaged in the field, that is, Q methodology. The article describes the defining features of the approach as well as providing examples of its application to argue that it is a method that offers particular opportunities and synergies for rural social science research
- …