1,589 research outputs found
Night Thoughts: George Gaylord Simpsonâs Reflections on Leaving the American Museum of Natural History
George Gaylord Simpson (1902-1984) was a leader in twentieth century vertebrate palaeontology, and he contributed to making the American Museum of Natural History a powerhouse in the field. In 1959, Simpson left his job at the museum in a bitter dispute with its management. Simpson never published a rationale for his resignation, but he secretly wrote one. After his first day unemployed, Simpson penned a long account of the circumstances surrounding his decision to leave. This STS Occasional Paper presents a complete transcription of Simpsonâs âNight Thoughts,â with brief introductory notes. Simpson was scathing of the museumâs Director, Albert Parr, and his once-close colleague, Edwin Colbert. This STS Occasional Paper also gives Colbert a voice, allowing him a counterbalance via correspondence with the editor about his reaction to Simpsonâs essay. The biographer will find key insights into a turning point in Simpsonâs career. They also will find a rare glimpse into the American Museumâs management during Parrâs directorship. Loyalties were tested to their breaking point. Some loyalties broke
Phylogenetic non-independence in rates of trait evolution
Statistical non-independence of speciesâ biological traits is recognized in most traits under selection. Yet, whether or not the evolutionary rates of such biological traits are statistically non-independent remains to be tested. Here we test the hypothesis that phenotypic evolutionary rates are non-independent, i.e. contain phylogenetic signal, using empirical rates of evolution in three separate traits: body mass in mammals; beak shape in birds; and bite force in amniotes. Specifically, we test whether rates are non-independent throughout the evolutionary history of each tree. We find evidence for phylogenetic signal in evolutionary rates in all three case studies. While phylogenetic signal diminishes deeper in time, this is reflective of statistical power owing to small sample and effect sizes. When effect size is large, e.g., owing to the presence of fossil tips, we detect high phylogenetic signals even in deeper time slices. Thus, we recommend that rates be treated as being non-independent throughout the evolutionary history of the group of organisms under study, and any summaries or analyses of rates through time â including associations of rates with traits â need account for the undesired effects of shared ancestry
Extreme and rapid bursts of functional adaptations shape bite force in amniotes
Adaptation is the fundamental driver of functional and biomechanical evolution. Accordingly, the states of biomechanical traits (absolute or relative trait values) have long been used as proxies for adaptations in response to direct selection. However, ignoring evolutionary history, in particular ancestry, passage of time and the rate of evolution, can be misleading. Here, we apply a recently developed phylogenetic statistical approach using significant rate shifts to detect instances of exceptional rates of adaptive changes in bite force in a large group of terrestrial vertebrates, the amniotes. Our results show that bite force in amniotes evolved through multiple bursts of exceptional rates of adaptive changes, whereby whole groupsâincluding Darwin's finches, maniraptoran dinosaurs (group of non-avian dinosaurs including birds), anthropoids and hominins (fossil and modern humans)âexperienced significant rate increases compared to the background rate. However, in most parts of the amniote tree of life, we find no exceptional rate increases, indicating that coevolution with body size was primarily responsible for the patterns observed in bite force. Our approach represents a template for future studies in functional morphology and biomechanics, where exceptional rates of adaptive changes can be quantified and potentially linked to specific ecological factors underpinning major evolutionary radiation
How a bird is an island
Replicate adaptive radiations occur when lineages repeatedly radiate and fill new but similar niches and converge phenotypically. While this is commonly seen in traditional island systems, it may also be present in host-parasite relationships, where hosts serve as islands. In a recent article in BMC Biology, Johnson and colleagues have produced the most extensive phylogeny of the avian lice (Ischnocera) to date, and find evidence for this pattern. This study opens the door to exploring adaptive radiations from a novel host-parasite perspective
Considering the Case for Biodiversity Cycles: Reexamining the Evidence for Periodicity in the Fossil Record
Medvedev and Melott (2007) have suggested that periodicity in fossil
biodiversity may be induced by cosmic rays which vary as the Solar System
oscillates normal to the galactic disk. We re-examine the evidence for a 62
million year (Myr) periodicity in biodiversity throughout the Phanerozoic
history of animal life reported by Rohde & Mueller (2005), as well as related
questions of periodicity in origination and extinction. We find that the signal
is robust against variations in methods of analysis, and is based on
fluctuations in the Paleozoic and a substantial part of the Mesozoic.
Examination of origination and extinction is somewhat ambiguous, with results
depending upon procedure. Origination and extinction intensity as defined by RM
may be affected by an artifact at 27 Myr in the duration of stratigraphic
intervals. Nevertheless, when a procedure free of this artifact is implemented,
the 27 Myr periodicity appears in origination, suggesting that the artifact may
ultimately be based on a signal in the data. A 62 Myr feature appears in
extinction, when this same procedure is used. We conclude that evidence for a
periodicity at 62 Myr is robust, and evidence for periodicity at approximately
27 Myr is also present, albeit more ambiguous.Comment: Minor modifications to reflect final published versio
The evolution of methods for establishing evolutionary timescales
The fossil record is well known to be incomplete. Read literally, it provides a distorted view of the history of species divergence and extinction, because different species have different propensities to fossilize, the amount of rock fluctuates over geological timescales, as does the nature of the environments that it preserves. Even so, patterns in the fossil evidence allow us to assess the incompleteness of the fossil record. While the molecular clock can be used to extend the time estimates from fossil species to lineages not represented in the fossil record, fossils are the only source of information concerning absolute (geological) times in molecular dating analysis. We review different ways of incorporating fossil evidence in modern clock dating analyses, including node-calibrations where lineage divergence times are constrained using probability densities and tip-calibrations where fossil species at the tips of the tree are assigned dates from dated rock strata. While node-calibrations are often constructed by a crude assessment of the fossil evidence and thus involves arbitrariness, tip-calibrations may be too sensitive to the prior on divergence times or the branching process and influenced unduly affected by well-known problems of morphological character evolution, such as environmental influence on morphological phenotypes, correlation among traits, and convergent evolution in disparate species. We discuss the utility of time information from fossils in phylogeny estimation and the search for ancestors in the fossil record. This article is part of the themed issue âDating species divergences using rocks and clocksâ
The skull of Epidolops ameghinoi from the early Eocene ItaboraĂ fauna, southeastern Brazil, and the affinities of the extinct marsupialiform order Polydolopimorphia
The skull of the polydolopimorphian marsupialiform Epidolops ameghinoi is described
in detail for the first time, based on a single well-preserved cranium and associated left
and right dentaries plus additional craniodental fragments, all from the early Eocene
(53-50 million year old) ItaboraĂ fauna in southeastern Brazil. Notable craniodental
features of E. ameghinoi include absence of a masseteric process, very small
maxillopalatine fenestrae, a prominent pterygoid fossa enclosed laterally by a
prominent ectopterygoid crest, an absent or tiny transverse canal foramen, a simple,
planar glenoid fossa, and a postglenoid foramen that is immediately posterior to the
postglenoid process. Most strikingly, the floor of the hypotympanic sinus was
apparently unossified, a feature found in several stem marsupials but absent in all
known crown marsupials. "Type II" marsupialiform petrosals previously described from
ItaboraĂ plausibly belong to E. ameghinoi; in published phylogenetic analyses, these
petrosals fell outside (crown-clade) Marsupialia. "IMG VII" tarsals previously referred to
E. ameghinoi do not share obvious synapomorphies with any crown marsupial clade,
nor do they resemble those of the only other putative polydolopimorphians represented
by tarsal remains, namely the argyrolagids. Most studies have placed
Polydolopimorphia within Marsupialia, related to either Paucituberculata, or to
Microbiotheria and Diprotodontia. However, diprotodonty almost certainly evolved
independently in polydolopimorphians, paucituberculatans and diprotodontians, and
Epidolops does not share obvious synapomorphies with any marsupial order.
Epidolops is dentally specialized, but several morphological features appear to be
more plesiomorphic than any crown marsupial. It seems likely Epidolops that falls
outside Marsupialia, as do morphologically similar forms such as Bonapartherium and
polydolopids. Argyrolagids differ markedly in their known morphology from Epidolops
but share some potential apomorphies with paucituberculatans. It is proposed that
Polydolopimorphia as currently recognised is polyphyletic, and that argyrolagids (and
possibly other taxa currently included in Argyrolagoidea, such as groeberiids and
patagoniids) are members of Paucituberculata. This hypothesis is supported by
Bayesian non-clock phylogenetic analyses of a total evidence matrix comprising DNA
sequence data from five nuclear protein-coding genes, indels, retroposon insertions
and morphological characters: Epidolops falls outside Marsupialia, whereas
argyrolagids form a clade with the paucituberculatans Caenolestes and Palaeothentes,
regardless of whether the Type II petrosals and IMG VII tarsals are used to score
characters for Epidolops or not. There is no clear evidence for the presence of crown
marsupials at ItaboraĂ, and it is possible that the origin and early evolution of
Marsupialia was restricted to the "Austral Kingdom" (southern South America,
Antarctica, and Australia)
Description et évaluation d'un réseau d'épidémiosurveillance des pathologies porcines mis en place dans un district du Nord Vietnam
Background and objective: Early menarche is increasing in prevalence worldwide, prompting clinical andpublic health interest on its links with pulmonary function. We aimed to investigate the relationship betweenearly menarche and lung function in middle age.Methods: The population-based Tasmanian LongitudinalHealth Study (born 1961; n = 8583), was initiated in 1968.The 5th Decade follow-up data (mean age: 45 years)included age at menarche and complex lung function testing. The 6th Decade follow-up (age: 53 years) repeated spirometry and gas transfer factor. Multiple linear regressionand mediation analyses were performed to determine theassociation between age at menarche and adult lung function and investigate biological pathways, including the proportion mediated by adult-attained height.Results: Girls reporting an early menarche (Conclusion:Early menarche was associated withreduced adult lung function. This is the first study toinvestigate post-BD outcomes and quantify the partialrole of adult height in this association
- âŠ