1,657 research outputs found

    Translating Video Recordings of Mobile App Usages into Replayable Scenarios

    Full text link
    Screen recordings of mobile applications are easy to obtain and capture a wealth of information pertinent to software developers (e.g., bugs or feature requests), making them a popular mechanism for crowdsourced app feedback. Thus, these videos are becoming a common artifact that developers must manage. In light of unique mobile development constraints, including swift release cycles and rapidly evolving platforms, automated techniques for analyzing all types of rich software artifacts provide benefit to mobile developers. Unfortunately, automatically analyzing screen recordings presents serious challenges, due to their graphical nature, compared to other types of (textual) artifacts. To address these challenges, this paper introduces V2S, a lightweight, automated approach for translating video recordings of Android app usages into replayable scenarios. V2S is based primarily on computer vision techniques and adapts recent solutions for object detection and image classification to detect and classify user actions captured in a video, and convert these into a replayable test scenario. We performed an extensive evaluation of V2S involving 175 videos depicting 3,534 GUI-based actions collected from users exercising features and reproducing bugs from over 80 popular Android apps. Our results illustrate that V2S can accurately replay scenarios from screen recordings, and is capable of reproducing \approx 89% of our collected videos with minimal overhead. A case study with three industrial partners illustrates the potential usefulness of V2S from the viewpoint of developers.Comment: In proceedings of the 42nd International Conference on Software Engineering (ICSE'20), 13 page

    Evaluating Two-Stream CNN for Video Classification

    Full text link
    Videos contain very rich semantic information. Traditional hand-crafted features are known to be inadequate in analyzing complex video semantics. Inspired by the huge success of the deep learning methods in analyzing image, audio and text data, significant efforts are recently being devoted to the design of deep nets for video analytics. Among the many practical needs, classifying videos (or video clips) based on their major semantic categories (e.g., "skiing") is useful in many applications. In this paper, we conduct an in-depth study to investigate important implementation options that may affect the performance of deep nets on video classification. Our evaluations are conducted on top of a recent two-stream convolutional neural network (CNN) pipeline, which uses both static frames and motion optical flows, and has demonstrated competitive performance against the state-of-the-art methods. In order to gain insights and to arrive at a practical guideline, many important options are studied, including network architectures, model fusion, learning parameters and the final prediction methods. Based on the evaluations, very competitive results are attained on two popular video classification benchmarks. We hope that the discussions and conclusions from this work can help researchers in related fields to quickly set up a good basis for further investigations along this very promising direction.Comment: ACM ICMR'1

    Receptive Field Block Net for Accurate and Fast Object Detection

    Full text link
    Current top-performing object detectors depend on deep CNN backbones, such as ResNet-101 and Inception, benefiting from their powerful feature representations but suffering from high computational costs. Conversely, some lightweight model based detectors fulfil real time processing, while their accuracies are often criticized. In this paper, we explore an alternative to build a fast and accurate detector by strengthening lightweight features using a hand-crafted mechanism. Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the feature discriminability and robustness. We further assemble RFB to the top of SSD, constructing the RFB Net detector. To evaluate its effectiveness, experiments are conducted on two major benchmarks and the results show that RFB Net is able to reach the performance of advanced very deep detectors while keeping the real-time speed. Code is available at https://github.com/ruinmessi/RFBNet.Comment: Accepted by ECCV 201

    Efficient On-the-fly Category Retrieval using ConvNets and GPUs

    Get PDF
    We investigate the gains in precision and speed, that can be obtained by using Convolutional Networks (ConvNets) for on-the-fly retrieval - where classifiers are learnt at run time for a textual query from downloaded images, and used to rank large image or video datasets. We make three contributions: (i) we present an evaluation of state-of-the-art image representations for object category retrieval over standard benchmark datasets containing 1M+ images; (ii) we show that ConvNets can be used to obtain features which are incredibly performant, and yet much lower dimensional than previous state-of-the-art image representations, and that their dimensionality can be reduced further without loss in performance by compression using product quantization or binarization. Consequently, features with the state-of-the-art performance on large-scale datasets of millions of images can fit in the memory of even a commodity GPU card; (iii) we show that an SVM classifier can be learnt within a ConvNet framework on a GPU in parallel with downloading the new training images, allowing for a continuous refinement of the model as more images become available, and simultaneous training and ranking. The outcome is an on-the-fly system that significantly outperforms its predecessors in terms of: precision of retrieval, memory requirements, and speed, facilitating accurate on-the-fly learning and ranking in under a second on a single GPU.Comment: Published in proceedings of ACCV 201

    Bose-Einstein Condensation of Helium and Hydrogen inside Bundles of Carbon Nanotubes

    Full text link
    Helium atoms or hydrogen molecules are believed to be strongly bound within the interstitial channels (between three carbon nanotubes) within a bundle of many nanotubes. The effects on adsorption of a nonuniform distribution of tubes are evaluated. The energy of a single particle state is the sum of a discrete transverse energy Et (that depends on the radii of neighboring tubes) and a quasicontinuous energy Ez of relatively free motion parallel to the axis of the tubes. At low temperature, the particles occupy the lowest energy states, the focus of this study. The transverse energy attains a global minimum value (Et=Emin) for radii near Rmin=9.95 Ang. for H2 and 8.48 Ang.for He-4. The density of states N(E) near the lowest energy is found to vary linearly above this threshold value, i.e. N(E) is proportional to (E-Emin). As a result, there occurs a Bose-Einstein condensation of the molecules into the channel with the lowest transverse energy. The transition is characterized approximately as that of a four dimensional gas, neglecting the interactions between the adsorbed particles. The phenomenon is observable, in principle, from a singular heat capacity. The existence of this transition depends on the sample having a relatively broad distribution of radii values that include some near Rmin.Comment: 21 pages, 9 figure

    Towards Bottom-Up Analysis of Social Food

    Get PDF
    in ACM Digital Health Conference 201

    The age of data-driven proteomics : how machine learning enables novel workflows

    Get PDF
    A lot of energy in the field of proteomics is dedicated to the application of challenging experimental workflows, which include metaproteomics, proteogenomics, data independent acquisition (DIA), non-specific proteolysis, immunopeptidomics, and open modification searches. These workflows are all challenging because of ambiguity in the identification stage; they either expand the search space and thus increase the ambiguity of identifications, or, in the case of DIA, they generate data that is inherently more ambiguous. In this context, machine learning-based predictive models are now generating considerable excitement in the field of proteomics because these predictive models hold great potential to drastically reduce the ambiguity in the identification process of the above-mentioned workflows. Indeed, the field has already produced classical machine learning and deep learning models to predict almost every aspect of a liquid chromatography-mass spectrometry (LC-MS) experiment. Yet despite all the excitement, thorough integration of predictive models in these challenging LC-MS workflows is still limited, and further improvements to the modeling and validation procedures can still be made. In this viewpoint we therefore point out highly promising recent machine learning developments in proteomics, alongside some of the remaining challenges

    Generic 3D Representation via Pose Estimation and Matching

    Full text link
    Though a large body of computer vision research has investigated developing generic semantic representations, efforts towards developing a similar representation for 3D has been limited. In this paper, we learn a generic 3D representation through solving a set of foundational proxy 3D tasks: object-centric camera pose estimation and wide baseline feature matching. Our method is based upon the premise that by providing supervision over a set of carefully selected foundational tasks, generalization to novel tasks and abstraction capabilities can be achieved. We empirically show that the internal representation of a multi-task ConvNet trained to solve the above core problems generalizes to novel 3D tasks (e.g., scene layout estimation, object pose estimation, surface normal estimation) without the need for fine-tuning and shows traits of abstraction abilities (e.g., cross-modality pose estimation). In the context of the core supervised tasks, we demonstrate our representation achieves state-of-the-art wide baseline feature matching results without requiring apriori rectification (unlike SIFT and the majority of learned features). We also show 6DOF camera pose estimation given a pair local image patches. The accuracy of both supervised tasks come comparable to humans. Finally, we contribute a large-scale dataset composed of object-centric street view scenes along with point correspondences and camera pose information, and conclude with a discussion on the learned representation and open research questions.Comment: Published in ECCV16. See the project website http://3drepresentation.stanford.edu/ and dataset website https://github.com/amir32002/3D_Street_Vie

    Single Shot Temporal Action Detection

    Full text link
    Temporal action detection is a very important yet challenging problem, since videos in real applications are usually long, untrimmed and contain multiple action instances. This problem requires not only recognizing action categories but also detecting start time and end time of each action instance. Many state-of-the-art methods adopt the "detection by classification" framework: first do proposal, and then classify proposals. The main drawback of this framework is that the boundaries of action instance proposals have been fixed during the classification step. To address this issue, we propose a novel Single Shot Action Detector (SSAD) network based on 1D temporal convolutional layers to skip the proposal generation step via directly detecting action instances in untrimmed video. On pursuit of designing a particular SSAD network that can work effectively for temporal action detection, we empirically search for the best network architecture of SSAD due to lacking existing models that can be directly adopted. Moreover, we investigate into input feature types and fusion strategies to further improve detection accuracy. We conduct extensive experiments on two challenging datasets: THUMOS 2014 and MEXaction2. When setting Intersection-over-Union threshold to 0.5 during evaluation, SSAD significantly outperforms other state-of-the-art systems by increasing mAP from 19.0% to 24.6% on THUMOS 2014 and from 7.4% to 11.0% on MEXaction2.Comment: ACM Multimedia 201
    corecore