We investigate the gains in precision and speed, that can be obtained by
using Convolutional Networks (ConvNets) for on-the-fly retrieval - where
classifiers are learnt at run time for a textual query from downloaded images,
and used to rank large image or video datasets.
We make three contributions: (i) we present an evaluation of state-of-the-art
image representations for object category retrieval over standard benchmark
datasets containing 1M+ images; (ii) we show that ConvNets can be used to
obtain features which are incredibly performant, and yet much lower dimensional
than previous state-of-the-art image representations, and that their
dimensionality can be reduced further without loss in performance by
compression using product quantization or binarization. Consequently, features
with the state-of-the-art performance on large-scale datasets of millions of
images can fit in the memory of even a commodity GPU card; (iii) we show that
an SVM classifier can be learnt within a ConvNet framework on a GPU in parallel
with downloading the new training images, allowing for a continuous refinement
of the model as more images become available, and simultaneous training and
ranking. The outcome is an on-the-fly system that significantly outperforms its
predecessors in terms of: precision of retrieval, memory requirements, and
speed, facilitating accurate on-the-fly learning and ranking in under a second
on a single GPU.Comment: Published in proceedings of ACCV 201