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Abstract 
A lot of energy in the field of proteomics is dedicated to the application of challenging 

experimental workflows, which include metaproteomics, proteogenomics, data independent 

acquisition (DIA), non-specific proteolysis, immunopeptidomics, and open modification 

searches. These workflows are all challenging because of ambiguity in the identification 

stage; they either expand the search space and thus increase the ambiguity of identifications, 

or, in the case of DIA, they generate data that is inherently more ambiguous. In this context, 

machine learning-based predictive models are now generating considerable excitement in 

the field of proteomics because these predictive models hold great potential to drastically 

reduce the ambiguity in the identification process of the above-mentioned workflows. 

Indeed, the field has already produced classical machine learning and deep learning models 

to predict almost every aspect of a liquid chromatography-mass spectrometry (LC-MS) 

experiment. Yet despite all the excitement, thorough integration of predictive models in 

these challenging LC-MS workflows is still limited, and further improvements to the modeling 

and validation procedures can still be made. In this viewpoint we therefore point out highly 

promising recent machine learning developments in proteomics, alongside some of the 

remaining challenges.  



   

 

 

 

Complex proteomics workflows generate more 
identification ambiguity 
Liquid chromatography - mass spectrometry (LC-MS) offers a high-throughput platform for 

the identification and quantification of proteins in a sample [1]. However, LC-MS analysis 

generates large amounts of signal data that require bioinformatics analysis to match these 

signals with peptides and proteins in the proteome, and to elucidate important biological 

processes such as molecular functions, pathways, protein-protein interactions, and signal 

transduction through post-translational modifications [2]. In order to study these biological 

processes, it is important to acquire a picture of the proteome that is as comprehensive as 

possible. However, more than half of the data currently generated by our LC-MS analyses is 

not matched with proteins, leaving a large unexplored gap in our understanding of the 

proteome [3–5]. 

In order to match signals with peptides and proteins, current proteomics search engines 

match sample-generated LC-MS signals with protein sequences from a target proteome 

database that is taken to contain all known proteins expected to be present in that sample 
[6,7]. This target database thus delineates the search space that contains all peptides that can 

potentially match a given LC-MS signal. If this search space does not contain the correct 

peptide for a given signal, a correctly functioning search engine will fail to match the signal. 

However, the search engine could also be led to make a mistake, incorrectly matching the 

signal to a seemingly well-fitting peptide. These false matches are often very hard to 

distinguish from true matches, which is why the search space should always contain all 

peptides that could be present in the sample, even those which are not of interest to the 

researcher [8,9]. Still, peptides could be absent from the search space due to unknown 

proteins, unknown proteoforms, unexpected protein modifications, and/or unconsidered 

enzymatic cleavages. To alleviate these problems, search engines need to consider larger 

search spaces to match more LC-MS signals (and thus obtain a more comprehensive picture 

of the proteome). This strategy forms the basis of proteogenomic searches [10,11], data 

independent searches [12–14], non-specific cleavage searches [15–17], immunopeptide searches 
[18], metaproteomics searches [19], and open modification searches [20–24]. Yet all these 

approaches fall victim to the rapidly increasing issue of ambiguous matches due to the 

increased sequence diversity offered to the search engine [25]. As a result, more than one 

possible match is found for a given signal, and these are often considered equivalent, or as 

near equivalent as to be indistinguishable [26]. This ambiguity leads to a higher uncertainty 

regarding the actual presence of the final (highest ranking) matched peptide in the sample. 



   

 

 

 

Correctly functioning search engines deal with such uncertainty by raising identification 

thresholds, thus lowering the identification rate [27]. 

Further complicating the identification issue, LC-MS signals, such as tandem MS spectra, are 

likely to contain both extraneous as well as insufficient information for matching with the 

correct biology. This further increases this possible ambiguity between candidate matches.  

Predicting analyte behavior to reduce identification 
ambiguity 
Solving the ambiguity issue is key in obtaining a comprehensive and accurate biological 

interpretation of the proteome. In identification workflows this can be achieved by exploiting 

the information present in the raw LC-MS data to its fullest. This information includes 

observed retention times, collisional cross-section data for ion mobility analyses, and 

precursor (MS1) and fragmentation spectrum (MS2) peak intensities. Unfortunately, most of 

this information is disregarded by the current generation of proteomics search engines. And 

when used, this information typically takes the form of LC-MS libraries built from previous 

observations of these signals [28]. This reliance on prior observation is fundamentally due to 

our limited understanding of the causes of the exact behavior of the analytes that produced 

these signals. Unfortunately, such experimental libraries are quite incomplete and are often 

very specific to a given experimental setup. There is thus a clear knowledge gap in our 

understanding of the signals acquired in our analytical workflows, which researchers have 

been trying to fill using models that predict peptide behavior in LC-MS instruments. Most 

notably, data-driven modeling through machine learning (ML) has been applied very 

successfully to predict peptide behavior, and thus to fill the knowledge gap that stops us 

from using all acquired information to resolve ambiguity in the identification process.  

A comprehensive overview of the different models and ML algorithms that have been 

applied to proteomics data up to 2014 has previously been provided by Kelchtermans et al. 
[29]. In this viewpoint we therefore focus specifically on recent advances in data-driven 

modeling of the LC-MS workflow since then. In general, data-driven LC-MS models learn to 

predict signals from example data obtained from previous experiments. This process of 

training models on observational data is a non-biased and generic way of fitting complex 

relations, which stands in contrast to using prior knowledge with defined rules to fit a model 
[30]. 



   

 

 

 

However, because of the large amounts of data required to train accurate and broadly 

applicable models [30], the increasing interest in, and effort put into, developing such 

predictive ML models has kept lockstep with the increasingly large amounts of high quality 

data that have become available in public repositories [31,32]. Indeed, the number of monthly 

submissions to proteomics repositories has seen an explosive growth over the past years, 

which in turn means that the amount of high quality data available to scientists is growing at 

a staggering rate as well [33].  

Perhaps most crucially, the availability of data has grown to the point that it has enabled the 

field to use deep learning (DL) approaches [34] instead of the earlier, classical ML algorithms 

like support vector machines (SVMs) [35] or random forests [36]. DL can fit very complex 

relations and can achieve higher performance compared to classical algorithms, but only if 

sufficiently large amounts of data are available to train them (Figure 1). 

Because LC-MS signals and the processes that generate these signals are convoluted and 

complex, there is a clear performance advantage to using DL to predict these signals as 

compared to classical ML algorithms. These DL methods use neural networks as a basis, 

which have undergone significant innovations in the past decade, and which have become 

highly performant in a wide variety of data driven applications [34]. In image classification, for 

instance, DL has shown that such many-layered neural networks can be used to solve 

complex problems [37]. 

While the ability of DL networks to solve complex problems is not yet fully understood, one 

of the main reasons has been ascribed to the depth of the network [37–39]. This depth is 

determined by the number of layers used, where each layer essentially transforms the input 

data into a new representation (i.e. features). This means that the network can learn complex 

features in the data, and essentially removes the step in which the numerical representation 

of the peptide is optimized for the prediction task in traditional ML algorithms. This so-called 

feature engineering step in classical ML algorithms has to be performed up front, is time 

consuming, and typically requires domain knowledge to execute well. Indeed, when the most 

optimal features are not provided to the ML algorithm, it can significantly hamper the final 

performance of such a classical model. It can thus be clear that DL has a considerable 

advantage over classical ML algorithms by its ability to construct its own features on-the-fly, 

a process called end-to-end learning [40]. The caveat is, however, as stated above, that 

learning these more complex features requires a large amount of data (Figure 1). 

Another benefit related to input features are the specialized layers in DL that can handle 

images, audio, and texts as input. Because the numerical representation for these data types 



   

 

 

 

can be of inconsistent length, their use in some classical ML algorithms requires additional 

processing. DL does not require these additional processing steps as it can use convolutional 
[41] or recurrent layers [42] to analyze such input. These specialized layers can also be applied 

to many proteomics problems, as sequences are essentially text and can be treated as such. 

In DL, the use of such specialized input layers maintains much more of the original structure 

in the data than classical ML algorithms, which are prone to expert interpretation. This in 

turn usually results in better performance of DL models when compared to classical ML. 

 

Figure 1: Conceptual rendering of the impact of growing data set sizes on the performance of classical machine 

learning (red line) compared to deep learning (blue line). For smaller data sets, classical machine learning is often 

still able to outperform deep neural networks, but with increasing training examples the performance converges 

for classical machine learning while a deep neural network keeps improving. Shallower neural networks (green 

line) generally show performance that is in between classical machine learning and deep neural networks. 

  



   

 

 

 

Virtually every step of LC-MS workflows can now be 
modelled 

 

Figure 2. Overview of a generalized LC-MS workflow with listed examples of classical machine learning (red box) 

and deep learning applications (blue box) at each step. 

A multitude of steps in proteomics LC-MS workflows have been modeled with machine 

learning, both classical and deep (Figure 2). One of the first of these steps is proteolytic 

digestion of proteins to peptides. Multiple models are available that predict whether a site 

in the protein sequence will be enzymatically cleaved. It should be noted that most of these 

models also inherently predict the peptide’s detectability by mass spectrometry. While older 

digestibility/detectability predictors used decision tree ensembles [43,44], current state-of-the-

art predictors employ DL [45,46].  

After enzymatic digestion, LC is often used as a first step to separate peptides based on their 

physicochemical properties. The time it takes for a peptide to elute from an LC-column is 

called the retention time. Some of the first retention time predictors used SVM algorithms 

with physicochemical properties of amino acids as input features [47,48]. The current state-of-

the-art methods use DL with either convolutional or recurrent layers and one-hot-encoding 

for the sequence [49,50]. Integration of retention time prediction mainly concerns the 



   

 

 

 

validation of peptide-to-spectrum matches (PSMs) and detection of chimeric spectra [51]. In 

addition to modeling the LC, a smaller effort has been put into training models to predict the 

collisional cross section (CCS) of peptides [52,53]. In contrast, the small molecule field has seen 

a multitude of models to predict the CCS already [54–59]. 

The next step in a bottom-up proteomics experiment is the fragmentation of peptides into 

fragment ions. While the mass-to-charge ratios (m/z) of the putative fragment for a given 

peptide can be easily calculated, their intensities follow more complex patterns. Early 

predictors of peptide fragmentation patterns were based on traditional, bottom-up kinetic 

models [60], but soon data-driven methods using decision trees, Bayesian networks, and 

SVMs took over [61–64]. As is the case with the previously mentioned types of predictors, the 

field has recently made a switch to DL implementations, with a plethora of DL peak intensity 

predictors having been published in the last two years [50,65–68].  

As classical proteomics search engines currently do not fully take MS² peak intensities into 

account, these predictors hold great potential to remove ambiguity between correct and 

incorrect PSMs. Indeed, adding such predictions into the identification pipeline can combine 

the increased sensitivity of spectral library searching with the much more comprehensive 

search space offered by database search engines. This, however, requires a complete 

integration of peak intensity prediction into the search engine. Another challenge for current 

state-of-the art peak intensity predictors is the encoding of peptide modifications, as 

modifications can heavily influence peptide fragmentation patterns [62,69]. 

Further applications of machine learning in proteomics mainly pertain to the identification 

of spectra. DeepNovo, for instance, is a deep learning application for de novo spectrum 

identification[70]. Another example is the routinely used post-processing application 

Percolator[71], in which classical search engine-derived PSM scores and metrics are passed 

on to a semi-supervised SVM implementation which improves the separation between true 

and false matches. When adding information from the above mentioned predictors, such as 

MS² peak intensities, this separation can be improved even further [50,72], and even allows the 

development of a completely machine learning-driven search engine [72].  



   

 

 

 

Challenges for Machine Learning and Deep Learning  
As discussed so far, modeling LC-MS through data-driven machine learning allows the 

exploitation of more of the information that is embedded in LC-MS data. This should help to 

solve the identification ambiguity issue that arises when the search space is expanded, or 

when the LC-MS data is inherently more ambiguous. Many such models have therefore been 

proposed, and the recent introduction of deep learning algorithms has provided the means 

to compute end-to-end models with significant performance gains. Despite these advances, 

implementations of predictive models in proteomics search engines for the identification of 

peptides (and proteins) in a sample is still very limited. Here, we point out a few of the key 

challenges that make this integration non-trivial. 

First, finding the optimally performant architecture for a complex DL model is a decidedly 

non-trivial task. The choice for an architecture is often based on experience with previously 

well-performing architectures on other problems, or on a trial-and-error strategy. Even 

though methods for optimizing this architecture have been proposed [73,74], most of the 

current models in proteomics do not use such a strategy. 

Once a model is trained, it is important that the model is properly validated, otherwise it 

could lead to wrong and missing peptide identifications downstream, in turn resulting in 

potentially incorrect biological interpretations. However, due to the complex nature of many 

state-of-the-art models, validation and evaluation is a non-trivial task. For now, the validation 

is often performed on a random small subset of the initial data set on which the model is 

trained. Ideally, model evaluation is rigorously designed, for example by testing for a wide 

applicability instead of peptides that closely resemble the training set. Even with a properly 

designed validation, many current studies do not go beyond testing the direct predictive 

performance. 

The validation of a model would be less of a problem if the inner workings could be easily 

understood. Again, the complexity of current DL models can mean that these are essentially 

a black box where a peptide goes in one end, and a prediction comes out the other. Even 

though there is an ongoing effort to bring insight into the inner workings of such models [75], 

what the algorithm learns can be incomprehensible to humans. This incomprehensibility 

means that researchers remain cautious to integrate predictive models into their workflows, 

because this would transfer most of the control in identifying a peptide to the model. 

Even when the model is validated with testing data (e.g. a random, preselected subset of the 

data), there are no dedicated benchmark data sets in proteomics that are consistently used 



   

 

 

 

for evaluating and comparing models. Such a benchmarking set together with specific 

evaluation methodologies should make comparisons between different models transparent 

and fair.  

Furthermore, it is customary to train, validate and test ML models on ground truth data sets. 

All data points within such a ground truth data set are known with complete certainty to be 

correct. Unfortunately, in most applications of ML in proteomics, there is no ground truth 

available. For now, data sets with synthetic peptides can be considered to be the closest 

available alternative [69,76]. Still, acquisition and analysis of synthetic peptides is performed 

with the same methods as the data it should validate. Ideally there would be an evaluation 

technique that is more accurate and does not suffer from the problems present in LC-MS 

workflows, such as peak broadening, competitive ionization, and poor fragmentation leading 

to ambiguity and/or missed identifications. Moreover, peptide synthesis is not a perfect 

process, resulting in the presence of aberrant sequences, and the absence of intended 

sequences. It can also be argued that synthetic peptide samples do not accurately represent 

the complexity of biological samples. The validation capabilities of synthetic peptide data 

therefore remain somewhat limited, and the quest for ground truth data to validate 

proteomics predictions should continue.  

The general applicability of a data set for evaluation purposes is not the only problem, 

however, as models themselves are sometimes only optimized for specific samples, or for 

specific instruments and their specific parameters. For LC retention time prediction this has 

partly been solved by normalizing the objective of the model through calibration with iRT 

peptides [77]. Without calibration, transfer learning has proven to improve performance of 

models trained on smaller data sets [49]. In transfer learning, some of the learned parameters 

from – usually - a larger data set are reused on different data sets to transfer the gained 

experience. For peptide fragmentation spectra, the experimental parameters (e.g. collisional 

energy) have been included as features [50,66], or tailor-made models have been trained for 

specific instruments and workflows, such as isobaric labeling [62]. 

Another clear example of models being limited in their applicability is the issue of protein 

modifications. Most LC-MS prediction models only encode unmodified amino acids and are 

thus unable to generalize for any modification, unless this can be encoded (with sufficient 

examples) as its own entity in the form of a new amino acid. It would therefore make sense 

to switch from encoding amino acids to encoding the chemical properties of amino acids and 

their modified forms instead, as has been done for metabolite retention time prediction [78]. 

These new representations have the potential to become very important in the future, 



   

 

 

 

because of the increasing popularity of open modification searching where such 

modification-aware predictions are essential.  

Once a model is trained and validated, it still needs to be integrated in complete workflows. 

Up until now, only a few tools integrate predictions from these models [12–14,72,79]. Indeed, 

while the field has been focusing on obtaining highly performant models, the integration of 

such models into usable workflows has not yet received the same attention. It should be 

noted, however, that the exact requirements for, and gains of, the introduction of better 

performing models have not been extensively researched. As a result, while it makes sense 

to further develop more performant models, it would be highly useful to investigate the 

relation between the discovery of novel or improved biological insights and improved model 

performance. In other words, it will be important to see the improvements in identification 

matched to downstream improvements in the biological interpretation of the corresponding 

results. In addition to setting performance targets for future models, such an analysis has 

the important potential to convince researchers of the worth of integrating these models 

into data processing workflows. 

Conclusion 
As the scientific community continues to acquire and analyze ever more LC-MS data, 

progress in extracting knowledge from these acquired data is not increasing at the same rate. 

This is partly due to the inability of search engines to make use of all the acquired data, 

leading to ambiguity in their identifications, especially in the most interesting, but also the 

most challenging, proteomics workflows. We have posited here that a large proportion of 

this ambiguity can likely be solved through integration of performant machine learning 

based models in the identification pipeline. Recently, such highly performant predictive 

models have become possible, largely due to state-of-the-art machine learning techniques 

that capitalize on the vast amounts of available public data through deep neural networks 

known as deep learning approaches. 

Researchers therefore now have access to a large library of different models that can predict 

the behavior of peptide analytes across almost all steps in their LC-MS workflow. However, 

integration of these models into routinely used identification tools remains limited. This is 

partly due to an inability to interpret the model and limited model applicability outside of its 

original context. Furthermore, model evaluation is performed on a variety of data sets 

instead of a single gold standard, which makes a fair comparison between models and 

justifying the choice for a model difficult. Next to the evaluation of the model itself, the 



   

 

 

 

impact of different models on downstream analysis should get more priority. Ultimately 

these models are developed to improve downstream analysis; the models and their 

predictions are a means to an end. 

In conclusion, the substantial promise that machine learning models hold to remove 

ambiguity in peptide identification will certainly trigger a more pronounced uptake, and we 

can therefore expect to see a widespread uptake of such models in end-user tools in the 

near future. 
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