164 research outputs found
Lymphatic Filariasis Control in Tanzania: Effect of Six Rounds of Mass Drug Administration with Ivermectin and Albendazole on Infection and Transmission.
Control of lymphatic filariasis (LF) in most countries of sub-Saharan Africa is based on annual mass drug administration (MDA) with a combination of ivermectin and albendazole, in order to interrupt transmission. We present findings from a detailed study on the effect of six rounds of MDA with this drug combination as implemented by the National Lymphatic Filariasis Elimination Programme (NLFEP) in a highly endemic rural area of north-eastern Tanzania.\ud
The effect of treatment on transmission and human infection was monitored in a community- and a school-based study during an 8-year period (one pre-intervention and 7 post-intervention years) from 2003 to 2011. Before intervention, 24.5% of the community population had microfilariae (mf) in the blood, 53.3% had circulating filarial antigens (CFA) and 78.9% had specific antibodies to the recombinant filarial antigen Bm14. One year after the sixth MDA, these values had decreased considerably to 2.7%, 19.6% and 27.5%, respectively. During the same period, the CFA prevalence among new intakes of Standard 1 pupils in 10 primary schools decreased from 25.2% to 5.6%. In line with this, transmission by the three vectors (Anopheles gambiae, An. funestus and Culex quinquefasciatus) as determined by dissection declined sharply (overall vector infectivity rate by 99.3% and mean monthly transmission potential by 99.2% between pre-intervention and fifth post-intervention period). A major shift in vector species composition, from predominantly anopheline to almost exclusively culicine was observed over the years. This may be largely unrelated to the MDAs but may have important implications for the epidemiology of LF in the area. Six MDAs caused considerable decrease in all the measured indices for transmission and human infection. In spite of this, indices were still relatively high in the late period of the study, and it may take a long time to reach the recommended cut-off levels for interruption of transmission unless extra efforts are made. These should include increased engagement of the target population in the control activities, to ensure higher treatment coverage. It is expected that the recent initiative to distribute insecticide impregnated bed nets to every household in the area will also contribute towards reaching the goal of successful LF elimination
Lymphatic Filariasis Control in Tanzania: Effect of Repeated Mass Drug Administration with Ivermectin and Albendazole on Infection and Transmission
Lymphatic filariasis (LF) is a disabling mosquito borne parasitic disease and one of the major neglected tropical diseases. In most countries of Sub-Saharan Africa the control of LF is based on yearly mass drug administration (MDA) with a combination of ivermectin and albendazole, in order to interrupt transmission. We monitored the effect of 3 repeated MDAs with this drug combination, as implemented by the Tanzanian National Lymphatic Filariasis Elimination Programme, on human infection and mosquito transmission during a five-year period (one pre-intervention and four post-intervention years) in a highly endemic community in north-eastern Tanzania. After start of intervention, human infection with the blood-stage larva of the parasite (microfilaria) initially decreased rapidly, leading to considerable reduction in transmission. The effects thereafter levelled off and transmission still occurred at low level after the third MDA. The MDAs had limited effect on molecular markers of adult worm burden (circulating filarial antigens) and transmission exposure (antibodies to Bm14 antigen) in the human population. The study highlights the importance of monitoring and regular evaluation in order to make evidence based programme adjustments, and it points to a need for further assessment of the long-term effect of repeated ivermectin/albendazole MDAs (including the importance of application intervals and treatment coverage), in order to optimize efforts to control LF in sub-Saharan Africa
Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918
The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized
Change in Composition of the Anopheles Gambiae Complex and its Possible Implications for the Transmission of Malaria and Lymphatic Filariasis in North-Eastern Tanzania.
A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded) by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2-4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species. The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this decline has been most marked for An. gambiae s.s., and least for An. arabiensis, leading to current predominance of the latter. Due to differences in biology and vectorial capacity of the An. gambiae s.l. complex the change in sibling species composition will have important implications for the epidemiology and control of malaria and lymphatic filariasis in the study area
The impact of mass drug administration and long-lasting insecticidal net distribution on Wuchereria bancrofti infection in humans and mosquitoes: an observational study in northern Uganda
BACKGROUND: Lymphatic filariasis (LF) in Uganda is caused by Wuchereria bancrofti and transmitted by anopheline mosquitoes. The mainstay of elimination has been annual mass drug administration (MDA) with ivermectin and albendazole, targeted to endemic districts, but has been sporadic and incomplete in coverage. Vector control could potentially contribute to reducing W. bancrofti transmission, speeding up progress towards elimination. To establish whether the use of long-lasting insecticidal nets (LLINs) can contribute towards reducing transmission of W. bancrofti in a setting with ongoing MDA, a study was conducted in an area of Uganda highly endemic for both LF and malaria. Baseline parasitological and entomological assessments were conducted in 2007, followed by high-coverage LLIN distribution. Net use and entomological surveys were carried out after one year, and final parasitological and entomological evaluations were conducted in 2010. Three rounds of MDA had taken place before the study commenced, with a further three rounds completed during the course of the study. RESULTS: In 2007, rapid mapping indicated 22.3% of schoolchildren were W. bancrofti antigen positive, and a baseline survey during the same year found age-adjusted microfilaraemia prevalence was 3.7% (95% confidence interval (CI): 2.6-5.3%). In 2010, age-adjusted microfilaraemia prevalence had fallen to 0.4%, while antigenaemia rates were 0.2% in children < 5 years and 6.0% in ≥ 5 years. In 2010, universal coverage of mosquito nets in a household was found to be protective against W. bancrofti antigen (odds ratio = 0.44, 95% CI: 0.22-0.89). Prevalence of W. bancrofti larvae in anopheline mosquitoes had decreased significantly between the 2007 and 2010 surveys, but there was an apparent increase in vector densities. CONCLUSION: A marked reduction in W. bancrofti infection and infectivity in humans was observed in the study area, where both MDA and LLINs were used to reduce transmission. The extent to which LLINs contributed to this decline is equivocal, however. Further work investigating the impact of vector control on anopheline-transmitted LF in an endemic area not benefitting from MDA would be valuable to determine the effect of such interventions on their own
Multi-host environments select for host-generalist conjugative plasmids
BACKGROUND: Conjugative plasmids play an important role in bacterial evolution by transferring ecologically important genes within and between species. A key limit on interspecific horizontal gene transfer is plasmid host range. Here, we experimentally test the effect of single and multi-host environments on the host-range evolution of a large conjugative mercury resistance plasmid, pQBR57. Specifically, pQBR57 was conjugated between strains of a single host species, either P. fluorescens or P. putida, or alternating between P. fluorescens and P. putida. Crucially, the bacterial hosts were not permitted to evolve allowing us to observe plasmid evolutionary responses in isolation. RESULTS: In all treatments plasmids evolved higher conjugation rates over time. Plasmids evolved in single-host environments adapted to their host bacterial species becoming less costly, but in the case of P. fluorescens-adapted plasmids, became costlier in P. putida, suggesting an evolutionary trade-off. When evolved in the multi-host environment plasmids adapted to P. fluorescens without a higher cost in P. putida. CONCLUSION: Whereas evolution in a single-host environment selected for host-specialist plasmids due to a fitness trade-off, this trade-off could be circumvented in the multi-host environment, leading to the evolution of host-generalist plasmids
The Impact of a Filariasis Control Program on Lihir Island, Papua New Guinea
Large-scale intervention programmes to control filariasis are currently underway worldwide. However, a major unresolved question remains: what is the appropriate duration for these programmes? Recent theoretical work and clinical field experience has highlighted how the ecological diversity between different endemic regions hinders decision making processes of when to stop ongoing MDA programs. The goal of our study was to identify the factors determining success for a five year LF elimination program. We undertook different types of surveys together with a pre-existing MDA program in villages from two regions that had different infection prevalence rates. Our study shows that the five yearly cycles of MDA could neither eliminate the disease nor stop transmission in the high prevalence villages, such that low baseline lymphatic filariasis prevalence has a positive influence on the outcome of a program. Thus, the study provides data supporting the recommendation that in certain high prevalence and transmission environments more sustained efforts may be necessary
Geographic determinants of reported human Campylobacter infections in Scotland
<p><b>Background:</b> Campylobacteriosis is the leading cause of bacterial gastroenteritis in most developed countries. People are exposed to infection from contaminated food and environmental sources. However, the translation of these exposures into infection in the human population remains incompletely understood. This relationship is further complicated by differences in the presentation of cases, their investigation, identification, and reporting; thus, the actual differences in risk must be considered alongside the artefactual differences.</p>
<p><b>Methods:</b> Data on 33,967 confirmed Campylobacter infections in mainland Scotland between 2000 and 2006 (inclusive) that were spatially referenced to the postcode sector level were analysed. Risk factors including the Carstairs index of social deprivation, the easting and northing of the centroid of the postcode sector, measures of livestock density by species and population density were tested in univariate screening using a non-spatial generalised linear model. The NHS Health Board of the case was included as a random effect in this final model. Subsequently, a spatial generalised linear mixed model (GLMM) was constructed and age-stratified sensitivity analysis was conducted on this model.</p>
<p><b>Results:</b> The spatial GLMM included the protective effects of the Carstairs index (relative risk (RR) = 0.965, 95% Confidence intervals (CIs) = 0.959, 0.971) and population density (RR = 0.945, 95% CIs = 0.916, 0.974. Following stratification by age group, population density had a significant protective effect (RR = 0.745, 95% CIs = 0.700, 0.792) for those under 15 but not for those aged 15 and older (RR = 0.982, 95% CIs = 0.951, 1.014). Once these predictors have been taken into account three NHS Health Boards remain at significantly greater risk (Grampian, Highland and Tayside) and two at significantly lower risk (Argyll and Ayrshire and Arran).</p>
<p><b>Conclusions:</b> The less deprived and children living in rural areas are at the greatest risk of being reported as a case of Campylobacter infection. However, this analysis cannot differentiate between actual risk and heterogeneities in individual reporting behaviour; nevertheless this paper has demonstrated that it is possible to explain the pattern of reported Campylobacter infections using both social and environmental predictors.</p>
Alternative Ii-independent antigen-processing pathway in leukemic blasts involves TAP-dependent peptide loading of HLA class II complexes
During HLA class II synthesis in antigen-presenting cells, the invariant chain (Ii) not only stabilizes HLA class II complexes in the endoplasmic reticulum, but also mediates their transport to specialized lysosomal antigen-loading compartments termed MIICs. This study explores an alternative HLA class II presentation pathway in leukemic blasts that involves proteasome and transporter associated with antigen processing (TAP)-dependent peptide loading. Although HLA-DR did associate with Ii, Ii silencing in the human class II-associated invariant chain peptide (CLIP)-negative KG-1 myeloid leukemic cell line did not affect total and plasma membrane expression levels of HLA-DR, as determined by western blotting and flow cytometry. Since HLA-DR expression does require peptide binding, we examined the role of endogenous antigen-processing machinery in HLA-DR presentation by CLIP− leukemic blasts. The suppression of proteasome and TAP function using various inhibitors resulted in decreased HLA-DR levels in both CLIP− KG-1 and ME-1 blasts. Simultaneous inhibition of TAP and Ii completely down-modulated the expression of HLA-DR, demonstrating that together these molecules form the key mediators of HLA class II antigen presentation in leukemic blasts. By the use of a proteasome- and TAP-dependent pathway for HLA class II antigen presentation, CLIP− leukemic blasts might be able to present a broad range of endogenous leukemia-associated peptides via HLA class II to activate leukemia-specific CD4+ T cells
- …