279 research outputs found

    Frequency- and signal type dependence of the performance of broad-band geoacoustic inversion in a shallow water environment with soft sediments

    Get PDF
    Geoacoustic inversion techniques are an attractive means for estimating physical properties of underwater environments. These techniques aim, at least partly, at a substitution of the costly methods of probing the seabottom by grab samples or cores. However, geoacoustic inversion comes at the price of high computational efforts. Especially, in cases in which large numbers of parameters need to be inverted for, finding the best fit between the measurements and a predicted model requires hundreds of iterations. Efficient global optimization tools exist that help reducing these efforts. One of these methods is the differential evolution method, which is employed in this paper. Beside the time needed for the optimization, another issue is the computational effort needed for establishing the forward model. It highly depends on the number and magnitude of frequencies employed. In general, high frequency calculations are more computational intensive. It is therefore investigated, for a given soft-layer bottom model, which frequencies are beneficial for the estimation of seabottom parameters and which frequencies only increase the computational time. Employed are frequencies in the bands of 300–800Hz (low-frequency) and 800–1600Hz (mid-frequency) for creating broad-band signals. Both, signals composed of tones at discrete frequencies (multi-tones) and frequency modulated waveforms (chirps) are compared. These signals are observed at a 4-element vertical line array. The measurements were performed during the Maritime Rapid Environmental Assessment / Blue Planet (MREA/BP'07) experiments [Le Gac & Hermand, 2007], which were carried out in the Mediterranean Sea in 2007, to address novel concepts of characterizing the continental shelf environment. The data originate from a shallow-water location, west of Italy and south-east of Elba Island, which is known to be composed of very fine grained sediments and an underlying silty clay bottom

    The driftless gas scintillation proportional counter

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Polariton condensation and lasing in optical microcavities - the decoherence driven crossover

    Full text link
    We explore the behaviour of a system which consists of a photon mode dipole coupled to a medium of two-level oscillators in a microcavity in the presence of decoherence. We consider two types of decoherence processes which are analogous to magnetic and non-magnetic impurities in superconductors. We study different phases of this system as the decoherence strength and the excitation density is changed. For a low decoherence we obtain a polariton condensate with comparable excitonic and photonic parts at low densities and a BCS-like state with bigger photon component due to the fermionic phase space filling effect at high densities. In both cases there is a large gap in the density of states. As the decoherence is increased the gap is broadened and suppressed, resulting in a gapless condensate and finally a suppression of the coherence in a low density regime and a laser at high density limit. A crossover between these regimes is studied in a self-consistent way analogous to the Abrikosov and Gor'kov theory of gapless superconductivity.Comment: 17 pages, 8 figures, submitted to PR

    Confirmation of triple shape coexistence in 179Hg: Focal plane spectroscopy of the α decay of 183Pb

    Get PDF
    The α decay of 183Pb has been studied in detail at the focal plane of the RITU gas-filled separator. The four previously known α decay branches have been ordered into the decay of two isomers in 183Pb. The deduced decay scheme and the interpretation of the inferred α decay hindrance factors and γ rays observed at the focal plane are strongly in favor of the recent suggestion of triple shape coexistence-oblate, prolate, and near-spherical in the daughter nucleus 179Hg

    Simvastatin treatment reduces the cholesterol content of membrane/lipid rafts, implicating the N -methyl-D-aspartate receptor in anxiety: a literature review

    Get PDF
    ABSTRACT Membrane/lipid rafts (MLRs) are plasmalemmal microdomains that are essential for neuronal signaling and synaptic development/stabilization. Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (statins) can disable the N-methyl-D-aspartate (NMDA) receptor through disruption of MLRs and, in turn, decrease NMDA-mediated anxiety. This hypothesis will contribute to understanding the critical roles of simvastatin in treating anxiety via the NMDA receptor

    De novo variants in the RNU4-2 snRNA cause a frequent neurodevelopmental syndrome

    Get PDF
    Around 60% of individuals with neurodevelopmental disorders (NDD) remain undiagnosed after comprehensive genetic testing, primarily of protein-coding genes1. Large genome-sequenced cohorts are improving our ability to discover new diagnoses in the non-coding genome. Here, we identify the non-coding RNA RNU4-2 as a syndromic NDD gene. RNU4-2 encodes the U4 small nuclear RNA (snRNA), which is a critical component of the U4/U6.U5 tri-snRNP complex of the major spliceosome2. We identify an 18 bp region of RNU4-2 mapping to two structural elements in the U4/U6 snRNA duplex (the T-loop and Stem III) that is severely depleted of variation in the general population, but in which we identify heterozygous variants in 115 individuals with NDD. Most individuals (77.4%) have the same highly recurrent single base insertion (n.64_65insT). In 54 individuals where it could be determined, the de novo variants were all on the maternal allele. We demonstrate that RNU4-2 is highly expressed in the developing human brain, in contrast to RNU4-1 and other U4 homologs. Using RNA-sequencing, we show how 5’ splice site usage is systematically disrupted in individuals with RNU4-2 variants, consistent with the known role of this region during spliceosome activation. Finally, we estimate that variants in this 18 bp region explain 0.4% of individuals with NDD. This work underscores the importance of non-coding genes in rare disorders and will provide a diagnosis to thousands of individuals with NDD worldwide

    Post-acute COVID-19 neuropsychiatric symptoms are not associated with ongoing nervous system injury

    Get PDF
    A proportion of patients infected with severe acute respiratory syndrome coronavirus 2 experience a range of neuropsychiatric symptoms months after infection, including cognitive deficits, depression and anxiety. The mechanisms underpinning such symptoms remain elusive. Recent research has demonstrated that nervous system injury can occur during COVID-19. Whether ongoing neural injury in the months after COVID-19 accounts for the ongoing or emergent neuropsychiatric symptoms is unclear. Within a large prospective cohort study of adult survivors who were hospitalized for severe acute respiratory syndrome coronavirus 2 infection, we analysed plasma markers of nervous system injury and astrocytic activation, measured 6 months post-infection: neurofilament light, glial fibrillary acidic protein and total tau protein. We assessed whether these markers were associated with the severity of the acute COVID-19 illness and with post-acute neuropsychiatric symptoms (as measured by the Patient Health Questionnaire for depression, the General Anxiety Disorder assessment for anxiety, the Montreal Cognitive Assessment for objective cognitive deficit and the cognitive items of the Patient Symptom Questionnaire for subjective cognitive deficit) at 6 months and 1 year post-hospital discharge from COVID-19. No robust associations were found between markers of nervous system injury and severity of acute COVID-19 (except for an association of small effect size between duration of admission and neurofilament light) nor with post-acute neuropsychiatric symptoms. These results suggest that ongoing neuropsychiatric symptoms are not due to ongoing neural injury
    corecore