565 research outputs found

    Magnetic order in the frustrated Ising-like chain compound Sr3_3NiIrO6_6

    Full text link
    We have studied the field and temperature dependence of the magnetization of single crystals of Sr3NiIrO6. These measurements evidence the presence of an easy axis of anisotropy and two anomalies in the magnetic susceptibility. Neutron powder diffraction realized on a polycrystalline sample reveals the emergence of magnetic reflections below 75 K with magnetic propagation vector k ~ (0, 0, 1), undetected in previous neutron studies [T.N. Nguyen and H.-C zur Loye, J. Solid State Chem., 117, 300 (1995)]. The nature of the magnetic ground state, and the presence of two anomalies common to this family of material, are discussed on the basis of the results obtained by neutron diffraction, magnetization measurements, and symmetry arguments

    Domain Wall Spin Dynamics in Kagome Antiferromagnets

    Full text link
    We report magnetization and neutron scattering measurements down to 60 mK on a new family of Fe based kagome antiferromagnets, in which a strong local spin anisotropy combined with a low exchange path network connectivity lead to domain walls intersecting the kagome planes through strings of free spins. These produce unfamiliar slow spin dynamics in the ordered phase, evolving from exchange-released spin-flips towards a cooperative behavior on decreasing the temperature, probably due to the onset of long-range dipolar interaction. A domain structure of independent magnetic grains is obtained that could be generic to other frustrated magnets.Comment: 5 pages, 4 figure

    Subtle competition between ferromagnetic and antiferromagnetic order in a Mn(II) - free radical ferrimagnetic chain

    Full text link
    The macroscopic magnetic characterization of the Mn(II) - nitronyl nitroxide free radical chain (Mn(hfac)2(R)-3MLNN) evidenced its transition from a 1-dimensional behavior of ferrimagnetic chains to a 3-dimensional ferromagnetic long range order below 3 K. Neutron diffraction experiments, performed on a single crystal around the transition temperature, led to a different conclusion : the magnetic Bragg reflections detected below 3 K correspond to a canted antiferromagnet where the magnetic moments are mainly oriented along the chain axis. Surprisingly in the context of other compounds in this family of magnets, the interchain coupling is antiferromagnetic. This state is shown to be very fragile since a ferromagnetic interchain arrangement is recovered in a weak magnetic field. This peculiar behavior might be explained by the competition between dipolar interaction, shown to be responsible for the antiferromagnetic long range order below 3 K, and exchange interaction, the balance between these interactions being driven by the strong intrachain spin correlations. More generally, this study underlines the need, in this kind of molecular compounds, to go beyond macroscopic magnetization measurements.Comment: 12 pages, 10 figures, submitted to Phys. Rev.

    Formation of collective spins in frustrated clusters

    Get PDF
    Using magnetization, specific heat and neutron scattering measurements, as well as exact calculations on realistic models, the magnetic properties of the \lacuvo compound are characterized on a wide temperature range. At high temperature, this oxide is well described by strongly correlated atomic SS=1/2 spins while decreasing the temperature it switches to a set of weakly interacting and randomly distributed entangled pseudo spins S~=1/2\tilde S=1/2 and S~=0\tilde S=0. These pseudo-spins are built over frustrated clusters, similar to the kagom\'e building block, at the vertices of a triangular superlattice, the geometrical frustration intervening then at different scales.Comment: 10 page

    Brain H2A.Z: the long and the short

    Get PDF

    Magnetoelectric MnPS3 thiophosphate as a new candidate for ferrotoroidicity

    Get PDF
    We have revisited the magnetic structure of manganese phosphorus trisulfide MnPS3 using neutron diffrac- tion and polarimetry. MnPS3 undergoes a transition toward a collinear antiferromagnetic order at 78 K. The resulting magnetic point-group breaks both the time reversal and the space inversion thus allowing a linear magnetoelectric coupling. Neutron polarimetry was subsequently used to prove that this coupling provides a way to manipulate the antiferromagnetic domains simply by cooling the sample under crossed magnetic and electrical fields, in agreement with the nondiagonal form of the magnetoelectric tensor. In addition, this tensor has, in principle, an antisymmetric part that results in a toroidic moment and provides with a pure ferrotoroidic compound

    Meeting report : 1st international functional metagenomics workshop May 7–8, 2012, St. Jacobs, Ontario, Canada

    Get PDF
    This report summarizes the events of the 1st International Functional Metagenomics Workshop. The workshop was held on May 7 and 8 in St. Jacobs, Ontario, Canada and was focused on building a core international functional metagenomics community, exploring strategic research areas, and identifying opportunities for future collaboration and funding. The workshop was initiated by researchers at the University of Waterloo with support from the Ontario Genomics Institute (OGI), Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Waterloo

    Kitaev interactions in the Co honeycomb antiferromagnets Na3Co2SbO6 and Na2Co2TeO6

    Get PDF
    Co2+^{2+} ions in an octahedral crystal field, stabilise a jeff_{eff} = 1/2 ground state with an orbital degree of freedom and have been recently put forward for realising Kitaev interactions, a prediction we have tested by investigating spin dynamics in two cobalt honeycomb lattice compounds, Na2_2Co2_2TeO6_6 and Na3_3Co2_2SbO6_6, using inelastic neutron scattering. We used linear spin wave theory to show that the magnetic spectra can be reproduced with a spin Hamiltonian including a dominant Kitaev nearest-neighbour interaction, weaker Heisenberg interactions up to the third neighbour and bond-dependent off-diagonal exchange interactions. Beyond the Kitaev interaction that alone would induce a quantum spin liquid state, the presence of these additional couplings is responsible for the zigzag-type long-range magnetic ordering observed at low temperature in both compounds. These results provide evidence for the realization of Kitaev-type coupling in cobalt-based materials, despite hosting a weaker spin-orbit coupling than their 4d and 5d counterparts
    • …
    corecore