137 research outputs found

    Social Immunity and the Superorganism: Behavioral Defenses Protecting Honey Bee Colonies from Pathogens and Parasites

    Get PDF
    Understanding the complexities of social insect immunity, that is, how insects combat pathogens, parasites and pests, is a fundamental question that not only has broad applications for understanding disease dynamics in social groups (Fefferman & Traniello, 2008) (e.g., human societies) but also practical benefits for improving honey bee stocks for increased health and productivity. When we first consider the concept of immunity in any organism, the tendency is to think at the level of the individual organism and focus on physical barriers (e.g., the honey bee cuticle) and individual physiological defenses that are largely induced in response to pathogens that get past the initial defenses (e.g., antimicrobial peptides in the bee hemolymph). For honey bees (specifically Apis mellifera in this discussion) and other social insects, however, the colony is often the unit of evolutionary selection (Seeley, 1997). Combined efforts of individual honey bees promote colony productivity and survival; thus individuals in that colony survive to successfully spread their genetics through subsequent generations via the production of drones, swarms, and queens. In many ways, immunity in social insects exemplifies the superorganism concept, whereby there is an immune system in individual bees, but there is also a colony-level immune system. Both function to promote survival not only of an individual bee but also of the colony. Given the reduction in immune genes that has now been noted for honey bees and Hymenoptera in general (Barribeau et al., 2015; Evans et al., 2006; Gadau et al., 2012; Simola et al., 2013), it seems as though the evolution of numerous colony-level, largely behavioral mechanisms has occurred either to compensate for the reduced investment in physiological immunity or as a result of the reliance on colony-level defenses relaxing the selection pressure for a stronger individual immune defense (Harpur & Zayed, 2013)

    Social Immunity and the Superorganism: Behavioral Defenses Protecting Honey Bee Colonies from Pathogens and Parasites

    Get PDF
    Understanding the complexities of social insect immunity, that is, how insects combat pathogens, parasites and pests, is a fundamental question that not only has broad applications for understanding disease dynamics in social groups (Fefferman & Traniello, 2008) (e.g., human societies) but also practical benefits for improving honey bee stocks for increased health and productivity. When we first consider the concept of immunity in any organism, the tendency is to think at the level of the individual organism and focus on physical barriers (e.g., the honey bee cuticle) and individual physiological defenses that are largely induced in response to pathogens that get past the initial defenses (e.g., antimicrobial peptides in the bee hemolymph). For honey bees (specifically Apis mellifera in this discussion) and other social insects, however, the colony is often the unit of evolutionary selection (Seeley, 1997). Combined efforts of individual honey bees promote colony productivity and survival; thus individuals in that colony survive to successfully spread their genetics through subsequent generations via the production of drones, swarms, and queens. In many ways, immunity in social insects exemplifies the superorganism concept, whereby there is an immune system in individual bees, but there is also a colony-level immune system. Both function to promote survival not only of an individual bee but also of the colony. Given the reduction in immune genes that has now been noted for honey bees and Hymenoptera in general (Barribeau et al., 2015; Evans et al., 2006; Gadau et al., 2012; Simola et al., 2013), it seems as though the evolution of numerous colony-level, largely behavioral mechanisms has occurred either to compensate for the reduced investment in physiological immunity or as a result of the reliance on colony-level defenses relaxing the selection pressure for a stronger individual immune defense (Harpur & Zayed, 2013)

    Inducible versus constitutive social immunity: examining effects of colony infection on glucose oxidase and defensin-1 production in honeybees

    Get PDF
    Honeybees use a variety of defence mechanisms to reduce disease infection and spread throughout the colony. Many of these defences rely on the collective action of multiple individuals to prevent, reduce or eradicate pathogens—often referred to as ‘social immunity’. Glucose oxidase (GOX) and some antimicrobial peptides (e.g. defensin-1 or Def1) are secreted by the hypopharyngeal gland of adult bees on larval food for their antiseptic properties. Because workers secrete these compounds to protect larvae, they have been used as ‘biomarkers’ for social immunity. The aim of this study was to investigate if GOX and Def1 are induced after pathogen exposure to determine whether its production by workers is the result of a collective effort to protect the brood and colony in response to a pathogen challenge. Specifically, we quantified GOX and Def1 in honeybee adults before and after colony-level bacterial infection by American foulbrood ((AFB), Paenibacillus larvae). Overall, our results indicate that levels of GOX and Def1 are not induced in response to pathogenic infections. We therefore conclude that GOX and Def1 are highly constitutive and co-opted as mechanisms of social immunity, and these factors should be considered when investigating immunity at the individual and colony level in social insects

    Honeybee microbiome is stabilized in the presence of propolis

    Get PDF
    Honeybees have developed many unique mechanisms to help ensure the proper maintenance of homeostasis within the hive. One method includes the collection of chemically complex plant resins combined with wax to form propolis, which is deposited throughout the hive. Propolis is believed to play a significant role in reducing disease load in the colony due to its antimicrobial and antiseptic properties. However, little is known about how propolis may interact with bee-associated microbial symbionts, and if propolis alters microbial community structure. In this study, we found that propolis appears to maintain a stable microbial community composition and reduce the overall taxonomic diversity of the honeybee microbiome. Several key members of the gut microbiota were significantly altered in the absence of propolis, suggesting that it may play an important role in maintaining favourable abundance and composition of gut symbionts. Overall, these findings suggest that propolis may help to maintain honeybee colony microbial health by limiting changes to the overall microbial community

    Gamma irradiation inactivates honey bee fungal, microsporidian, and viral pathogens and parasites

    Get PDF
    Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor. Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV], Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pathogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae, and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom development post-treatment and not simply rate or quantity detected. These findings suggest that gamma irradiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and productivity

    Potassium ion channels as a molecular target to reduce virus infection and mortality of honey bee colonies

    Get PDF
    Declines in managed honey bee populations are multifactorial but closely associated with reduced virus immunocompetence and thus, mechanisms to enhance immune function are likely to reduce viral infection rates and increase colony viability. However, gaps in knowledge regarding physiological mechanisms or ‘druggable’ target sites to enhance bee immunocompetence has prevented therapeutics development to reduce virus infection. Our data bridge this knowledge gap by identifying ATP-sensitive inward rectifier potassium ( KATP) channels as a pharmacologically tractable target for reducing virus-mediated mortality and viral replication in bees, as well as increasing an aspect of colony-level immunity. Bees infected with Israeli acute paralysis virus and provided KATP channel activators had similar mortality rates as uninfected bees. Furthermore, we show that generation of reactive oxygen species (ROS) and regulation of ROS concentrations through pharmacological activation of KATP channels can stimulate antiviral responses, highlighting a functional framework for physiological regulation of the bee immune system. Next, we tested the influence of pharmacological activation of KATP channels on infection of 6 viruses at the colony level in the field. Data strongly support that KATP channels are a field-relevant target site as colonies treated with pinacidil, a KATP channel activator, had reduced titers of seven bee-relevant viruses by up to 75-fold and reduced them to levels comparable to non-inoculated colonies. Together, these data indicate a functional linkage between KATP channels, ROS, and antiviral defense mechanisms in bees and define a toxicologically relevant pathway that can be used for novel therapeutics development to enhance bee health and colony sustainability in the field

    Propolis counteracts some threats to honey bee health

    Get PDF
    Honey bees (Apis mellifera) are constantly dealing with threats from pathogens, pests, pesticides and poor nutrition. It is critically important to understand how honey bees’ natural immune responses (individual immunity) and collective behavioral defenses (social immunity) can improve bee health and productivity. One form of social immunity in honey bee colonies is the collection of antimicrobial plant resins and their use in the nest architecture as propolis. We review research on the constitutive benefits of propolis on the honey bee immune system, and its known therapeutic, colony-level effects against the pathogens Paenibacillus larvae and Ascosphaera apis. We also review the limited research on the effects of propolis against other pathogens, parasites and pests (Nosema, viruses, Varroa destructor, and hive beetles) and how propolis may enhance bee products such as royal jelly and honey. Although propolis may be a source of pesticide contamination, it also has the potential to be a detoxifying agent or primer of detoxification pathways, as well as increasing bee longevity via antioxidant-related pathways. Throughout this paper, we discuss opportunities for future research goals and present ways in which the beekeeping community can promote propolis use in standard colonies, as one way to improve and maintain colony health and resiliency

    Geographic variation in polyandry of the Eastern Honey Bee, Apis cerana, in Thailand

    Get PDF
    The repeated evolution of extreme polyandry in advanced social insects is exceptional and its explanation has attracted significant attention. However, most reported estimates of the number of matings are derived from limited sampling. Temporal and geographic variation in mating behavior of social insects has not been sufficiently studied. Worker offspring of 18 Eastern Honey Bee (Apis cerana Fabr.) queens from three populations across Thailand were genotyped at five microsatellite markers to test for population differences of mating behavior across three different ecosystems. The number of matings decreased from a northern, more seasonal environment to a southern tropical population and was lowest in a tropical island population. Our study confirms earlier findings that social insect mating behavior shows biogeographic variation and highlights that data from several populations are needed for reliable species-specific estimates of the number of matings. Detailed studies of populations that show significant differentiation in the number of matings may be able to discriminate effectively among the different hypotheses that have been proposed to explain the evolution of polyandry in honey bees and other advanced social insects

    European propolis is highly active against trypanosomatids including Crithidia fasciculata.

    Get PDF
    Extracts of 35 samples of European propolis were tested against wild type and resistant strains of the protozoal pathogens Trypanosoma brucei, Trypanosoma congolense and Leishmania mexicana. The extracts were also tested against Crithidia fasciculata a close relative of Crithidia mellificae, a parasite of bees. Crithidia, Trypanosoma and Leishmania are all members of the order Kinetoplastida. High levels of activity were obtained for all the samples with the levels of activity varying across the sample set. The highest levels of activity were found against L. mexicana. The propolis samples were profiled by using liquid chromatography with high resolution mass spectrometry (LC-MS) and principal components analysis (PCA) of the data obtained indicated there was a wide variation in the composition of the propolis samples. Orthogonal partial least squares (OPLS) associated a butyrate ester of pinobanksin with high activity against T. brucei whereas in the case of T. congolense high activity was associated with methyl ethers of chrysin and pinobanksin. In the case of C. fasciculata highest activity was associated with methyl ethers of galangin and pinobanksin. OPLS modelling of the activities against L. mexicana using the mass spectrometry produced a less successful model suggesting a wider range of active components

    Increased Resin Collection after Parasite Challenge: A Case of Self-Medication in Honey Bees?

    Get PDF
    The constant pressure posed by parasites has caused species throughout the animal kingdom to evolve suites of mechanisms to resist infection. Individual barriers and physiological defenses are considered the main barriers against parasites in invertebrate species. However, behavioral traits and other non-immunological defenses can also effectively reduce parasite transmission and infection intensity. In social insects, behaviors that reduce colony-level parasite loads are termed “social immunity.” One example of a behavioral defense is resin collection. Honey bees forage for plant-produced resins and incorporate them into their nest architecture. This use of resins can reduce chronic elevation of an individual bee's immune response. Since high activation of individual immunity can impose colony-level fitness costs, collection of resins may benefit both the individual and colony fitness. However the use of resins as a more direct defense against pathogens is unclear. Here we present evidence that honey bee colonies may self-medicate with plant resins in response to a fungal infection. Self-medication is generally defined as an individual responding to infection by ingesting or harvesting non-nutritive compounds or plant materials. Our results show that colonies increase resin foraging rates after a challenge with a fungal parasite (Ascophaera apis: chalkbrood or CB). Additionally, colonies experimentally enriched with resin had decreased infection intensities of this fungal parasite. If considered self-medication, this is a particularly unique example because it operates at the colony level. Most instances of self-medication involve pharmacophagy, whereby individuals change their diet in response to direct infection with a parasite. In this case with honey bees, resins are not ingested but used within the hive by adult bees exposed to fungal spores. Thus the colony, as the unit of selection, may be responding to infection through self-medication by increasing the number of individuals that forage for resin
    • 

    corecore