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Honeybees have developed many unique mechanisms to help ensure the
proper maintenance of homeostasis within the hive. One method includes
the collection of chemically complex plant resins combined with wax to
form propolis, which is deposited throughout the hive. Propolis is believed
to play a significant role in reducing disease load in the colony due to its
antimicrobial and antiseptic properties. However, little is known about
how propolis may interact with bee-associated microbial symbionts, and
if propolis alters microbial community structure. In this study, we found that
propolis appears to maintain a stable microbial community composition and
reduce the overall taxonomic diversity of the honeybee microbiome. Several
key members of the gut microbiota were significantly altered in the absence
of propolis, suggesting that it may play an important role in maintaining
favourable abundance and composition of gut symbionts. Overall, these find-
ings suggest that propolis may help to maintain honeybee colony microbial
health by limiting changes to the overall microbial community.

1. Introduction
Honeybees (Apis mellifera) as eusocial, cavity-nesting organisms have evolved
many mechanisms to maintain a homeostatic nest environment. For proper
development of larvae and pupae, temperature and humidity need to remain
relatively constant. In addition, the nest architecture must support comb attach-
ment, be waterproof and restrain detritus. Finally, it is critical that microbial
growth be controlled in such an environment. Honeybees collect and deposit
plant resins on the hive walls to help maintain optimal nest conditions and
use these resins to restrict nest entrances to reduce predation and parasitism
[1]. As resin is brought into the hive, it is mixed with varying amounts of
bee-produced wax and is then termed ‘propolis’ [1,2].

Propolis not only has an architectural purpose but it also functions as a type of
social immunedefence—a colony-level defensemechanismagainst pathogens and
parasites that arises due to the collective behavior of individuals [3–6]. Resins are
collected as a type of social medication with foragers increasing resin collection
when the colony is pathogen challenged [7–9]. In addition, the presence of a propo-
lis envelope in pathogen-challenged colonies appears to increase the antimicrobial
activityof the glandular secretions thatworkers feed to developing larvae [10]. Fur-
thermore, bees from healthy colonies with more propolis in the nest interior have
decreased investment in their immune response, whichmay lead to increased life-
span [11]. As reviewed in Simone-Finstrom et al. [5], propolis has both direct effects
against pathogens andmore subtle effects on individual bees that may translate to
reduced disease at the colonyand individual levels. However, the specificmechan-
isms explaining these effects are yet to be elucidated.

Plant exudates incorporated into propolis are rich in secondary metabolites
that are not involved in primary plant biochemical processes such as growth
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and development, but are important for mediating interactions
with other organisms (e.g. insects, microbes) [12]. The most
well-characterized plant secondary metabolites are essential
oils (EOs), which are complex mixtures of volatile aromatic
compounds. Natural EO mixtures have a broad range of anti-
septic and antimicrobial activities due to the fact that the
differing components often exhibit multiple modes of action
[12]. EOs, thus, exert pressure on animal microbiota to
tolerate, use, or detoxify secondary plant compounds that are
encountered in the environment [13,14]. EOs have been exper-
imentally shown to increase host weight gain and improve
resistance to infection in some animals via microbiota
alterations that impact community structure and function [15].

The honeybee gut and hive environments are colonized by
distinct microbial communities that impact individual and
colony-level health.Therefore, the collectivehoneybeegutmicro-
biota and hive microbiota can be considered an extension of the
colony phenotype [16–18]. The gut harbours a core community
that includes ubiquitous animal gut bacteria (i.e. Lactobacillus
and Bifidobacterium) as well as specialized clades that are
shared with other corbiculate bees (i.e. Snodgrasella and Gillia-
mella) [17–19]. Gut bacteria are present at low levels in hive
materials such as food stores and comb, but core hive bacteria
(i.e. Bombella apis (formerly Parasacharribacter apium [20]) and L.
kunkeii) can survive the extreme conditions of the hive and there-
fore are present at significantly higher concentrations [21]. Both
gut and hive bacteria are adapted to survive bee social immune
defenses such as glucose oxidase production and innate
immune functions such as antimicrobial peptides [17,22]. Even
though honeybees do not consume propolis, we hypothesized
that thehoneybeemicrobiotahas co-evolved to thrive in thepres-
ence of propolis. In thisway,wepostulate that the role of propolis
as a social immune defense may extend to influencing microbial
homeostasis in the hive and collective gut of the colony.

Since it has previously been documented that a propolis-
enriched environment influences total bacterial loads of
honeybee colonies [6], the goal of this study was to explore
how propolis may specifically influence microbial community
structure in honeybees. As our knowledge of the importance of
the honeybee microbiota to bee health has increased rapidly
over the last several years, investigations regarding how
the hive environment influences honeybee microbiota have
increased significance.

2. Methods
(a) Environmental parameters and study design
Experimental design was described previously by Borba et al. [23].
Briefly, 12 colonies were provided with commercially available
propolis traps (Mann Lake Ltd, MN, USA) stapled to the four
inner walls of each bee box to encourage the bees to construct a
propolis envelope within the nest. This treatment resulted in pro-
polis-rich colonies. Twelve additional colonies served as controls;
no propolis trap was provided and the bees deposited propolis
in the cracks and crevices within the box and were left with
smooth interior walls, and therefore were propolis-poor. Exper-
imental measures quantifying population and brood size, Varroa
infestation, Nosema spp., bacterial load and viral titre can be
found in Borba et al. 2015 from the 2012 September cohort [23].
There were no differences in colony size, parasite or pathogen
load, or colony bacterial load (as assessed by 16S gene expression)
in the colonies at the time of sampling for the current study. How-
ever, immune-gene expression was different between the two
colony treatments [23], consistent with previous work [6].

Newly emerged bees (noted by their location near eclosing
adults from pupal cells, and by their fuzzy appearance [24])
were painted using enamel paint markers and collected after six
days [25]. The marked 7-day-old bees were stored at −80°C until
analysis. Seven-day-old bees were chosen for analysis as differ-
ences in total bacterial loads in bees collected from propolis-rich
or propolis-poor colonies were previously observed at this time
point [6]. This is also after the age at which the characteristic gut
bacterial communities are established [26].

(b) Sample processing and DNA extraction
An average of five to six whole bees from six propolis-rich and six
propolis-poor colonies (total N = 62 samples) were processed indi-
vidually. DNA extraction was carried out following established
methods [27,28]. Briefly, whole bees were flash-frozen in liquid
nitrogen and ground using sterilized pestle into a fine powder.
Following grinding, Tris–EDTA and lysozyme (at 20 mg ml−1)
were added and the sample was incubated at 37°C for 30 min.
After incubation, proteinase K (at 50 mg ml−1) was added and
the sample incubated at 50°C overnight. Phenol–chloroform extrac-
tion was performed twice before ethanol precipitation and DNAs
were re-suspended in Tris–EDTA and cleaned using a column-
based genomic clean-up kit (Zymo) according to manufacture
instructions. DNAs were quantified using a NanoDrop2000 instru-
ment (Thermo Scientific Inc., Grand Island, NY, USA). PCR was
performed using barcoded Illumina primers following the Earth
Microbiome protocols [22,23], with HF Phusion polymerase mix
(New England BioLabs, Ipswich, MA, USA) and 3% dimethylsulf-
oxide (DMSO). Amplifications were performed in triplicate and
pooled before normalization based on PicoGreen quantification.

(c) 16S rRNA gene amplicons community analysis and
data filtering

PCR and sequencing were performed using a modified version of
the protocol presented in Caporaso et al., adapted for the Illumina
MiSeq 300 bp paired-end sequencing. The V4 region of the 16S
rRNA gene was amplified with region-specific primers that
included the Illumina flowcell adapter sequences [27]. Samples
were multiplexed and then sequenced on a single flowcell. The
software Quantitative Insights Into Microbial Ecology (QIIME 2),
an open-source microbiome data science platform, was used for
data preprocessing and sequence analysis [29]. Raw sequence
data files were de-multiplexed and low-quality reads were
removed using the default parameters for QIIME2 for paired-
end data. Chimeric sequences were corrected using the DADA2
plugin [30]. Alpha and beta diversity analyses were done using
the q2-diversity plugin and to generate the principal coordinates
analysis with a minimum sampling depth of 15 000 reads and con-
cordance of features shared by at least two samples. Taxonomic
analysis was done with the q2-feature-classifier plugin to map
sequence data to taxonomic features. Classifiers were trained
directly from the sample data with a 99% similarity to the Silvia
16S sequence database [31]. Representative featureswere then sub-
ject to BLASTn query using the NCBI database to assign specific
isolates. QIIME2’s diversity plugin was used to perform permuta-
tional multivariate ANOVA (PERMANOVA) and a test for
homogeneity of multivariate dispersions (PERMDISP) to deter-
mine statistical differences in group clustering and dispersion.
Identification of differentially abundant features across samples
was done using the statistical framework Analysis of Composition
of Microbes (ANCOM) and Gneiss [32,33].

3. Results
(a) Bacterial sequences and classification
We obtained 3 103 363 reads sequenced from the 16S rRNAV4
region from 62 samples. Quality filtering reduced the total
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number of samples to 44 (23 propolis-rich, 21 propolis-poor),
with a sequences per sample range from 15 208 to 165 115
(median = 39 448). Sequences clustered in a total of 415 unique
taxonomic features. Sampling depth was sufficient to capture
similar levels of feature diversity for both treatment groups
(electronic supplementary material, figure S1).

(b) Taxa identification
Sequenced reads were resolved down to the family or genus
level to maintain confidence in taxonomic designation. The
main taxa present across both groups are presented in figure 1a
and include taxa such as Snodgrassella, Bartonella, Lactobacillius,
Bifidobacterium, Frischella and Gilliamella (figure 1a). These taxa
are considered part of the dominant bacteria of the honeybee
gut [26,28,34–36].

(c) Microbial community differences
PERMANOVA and PERMDISP identified significant differen-
ces in microbial communities between bees from propolis-rich
and propolis-poor colonies using two different dissimilarity
measures (PERMANOVA: Bray–Curtis: p = 0.027, r2 = 0.06,
weighted UniFrac: p = 0.002, r2 = 0.15; PERMDISP: Bray–
Curtis: p = 0.045, weighted UniFrac: p = 0.004). All alpha
diversity and unweighted UniFrac distances between the two
sample groups were not significant. Principal coordinate analy-
sis (PCoA) plots for Bray–Curtis and weighted UniFrac shows
microbial community diversity with significant clustering of
the propolis-rich group compared to propolis-poor (figure 2a,b).

(d) Taxa differences
Identification of taxa that were differentiated between bees
reared in the propolis-rich versus propolis-poor environments
was done using the ANCOM and Gneiss methods. Two taxa
(Bartonella and Lactobacillus) were identified as significantly
differentiated by both methods. Bartonella and Lactobacillus
were both more abundant in the propolis-poor group as com-
pared to the propolis-rich group. ANCOM analysis found a
total of eight taxa thatwere significantly differentiated between
the two treatments (Bartonella, Lactobacillus, Bifidobacterium,
Enterobacteriaceae, Bombella, Corynebacteriales,Methylobacter-
ium and Dietzia) (figure 1b). However Bombella,
Corynebacteriales,Dietzia andMethylobacterium had extremely
low abundance and differences could be artefacts of sampling
(electronic supplementary material, figure S2). Bartonella and
Lactobacillus were more abundant in bees from propolis-poor
colonies, while Bifidobacterium and Enterobacteriaceae were
more abundant in bees from propolis-rich colonies (figure 1b).
The Gneiss method identified three significantly differentiated
taxa (Bartonella, Lactobacillus, Snodgrassella (electronic sup-
plementary material, figure S3)). Bartonella and Lactobacillus
were more abundant in the propolis-poor treatment (as also
indicated by ANCOM analysis), while Snodgrassella was
enriched in the propolis-rich treatment.

4. Discussion
We examined the microbial community composition of honey-
bees in propolis-rich and propolis-poor environments. As bees
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Figure 1. (a) Taxonomic composition of the microbial communities of bees from propolis-rich and propolis-poor colonies; (b) comparison of the number of times
each taxa was observed by a given read (feature abundance) of four significantly differentiated taxa by ANCOM analysis.
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Figure 2. (a) Principal coordinates analysis (PCoA) using Bray–Curtis and (b) weighted UniFrac measures of dissimilarity showing greater levels of similarity (clus-
tering) among propolis-rich samples as compared to samples from propolis-poor colonies along with the 95% confidence interval indicated by the respective circles.
Significance determined through PERMANOVA: Bray–Curtis: p = 0.027, weighted UniFrac: p = 0.002.
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collected from propolis enriched environments have pre-
viously been shown to harbour fewer bacteria (based on 16S
rRNA abundance [6] but see also [23]), our aim here was to
determine the effect of propolis on specific taxa of the honeybee
microbiota. The honeybee microbiota from propolis-rich
colonies were more similar to each other in taxonomic compo-
sition, compared to propolis-poor colonies. We found that
the honeybee microbiota was more consistent between bees
collected from propolis-rich colonies, while those from
propolis-poor colonies exhibited greater taxonomic diversity.
Several bacterial groups were also found to have different rela-
tive abundances with respect to the amount of propolis in the
colonies. The results presented herein suggest that propolis
may support regulation of colony microbiota by maintaining
a stable or homeostatic microbial community.

Bray–Crutis andweighted UniFracmeasures of dissimilar-
ity found significant differences in the overall taxonomic
microbial diversity between bees from propolis-rich and pro-
polis-poor colonies. Significance in the PERMANOVA tests
demonstrates that there were overall localized differences
between the two groups across the two diversity measures.
PERMDISP provides additional evidence that the two groups
were also significantly different in terms of the variance distri-
bution that exists within propolis-rich and propolis-poor
colonies. The latter of the two tests provides subsequent
evidence that the microbial population variation is limited in
the propolis-rich colonies and thus more stable across colonies
as compared to the propolis-poor colonies. Given that honey-
bee-associated microbes have likely co-evolved with their
hosts in the presence of propolis, as propolis use is ubiquitous
in feral colonies nesting in tree cavities [1], some microbial
symbionts may be more or less sensitive to its chemical pro-
perties. While this has yet to be explored, these results raise
the question of whether specific ratios of particular taxa are
particularly important for bee health or if the stability of rep-
resentation of specific taxa is key to preventing dysbiosis [19].
While it is likely a combination of the two, variation in commu-
nity composition and diversity can dramatically affect the
overall health of the host [37]. Fourof the eight significantly dif-
ferentiated taxawe identified in this study are considered to be
core members of the honeybee gut microbiome (Lactobacillius,
Bifidobacterium, Bartonella and Snodgrassella) [34]. Lactobacillus
and Bifidobacteriaceae both belong to taxonomic groups that
are implicated in carbohydrate transport and polysaccharide
processing [38]. Lactobacillus were primarily comprised of the
‘Firm-50 phylotype, and understanding how its differential
abundance with respect to propolis or other environmental
conditions could impact colony health is important for future
work. Bifidobacteriaceae were more abundant in the propolis
group and have been previously shown to be important to
maintaining colony health [17,26,35,37,39]. Bartonella is a gut
symbiont [40] that has been shown to differ seasonally [41]
and in honey bees exposed to various types of landscapes
[34], raising the question of its functional roles and how
propolis may interact with it.

Other significant taxa identified in the study, such as
Enterobacteriaceae, are facultative anaerobes that are suggested
to be involved in metabolic processes such as including sugar
and nitrogen processing [41]. Therefore, alterations in the abun-
dances of this family of microbes may have an impact on host
metabolism.Snodgrassellawasthemost abundant taxa identified
in our study. Snodgrassella is a common honeybee symbiont
which modulates the gut environment by consuming O2 to
maintain anaerobic conditions in the gut lumen [19,42]. The sig-
nificant abundance of this bacterium in the bee gut suggests that
it may play a significant role in maintaining the overall homeo-
stasis of the gut microflora. Although we were unable to detect
strain-leveldifferenceswithinSnodgrassella, itmaybe interesting
to explore how the specific strains regulate gut community
dynamics and host physiology. Further study is also necessary
to better characterize the specific effects of microbiota shifts
and how they are related to functional changes in host physi-
ology and health (see electronic supplemental material,
PICRUSt analysis), particularly in this context of straindiversity.

5. Conclusion
In total, our results demonstrate that honeybees in a propolis-
rich environment differ in their relative abundances of core
microbial community members. These findings provide
interesting and novel insight into how a feature of the nest
environment can influence the community structure of
co-evolved bee-associatedmicrobes, and suggest an additional
mechanismbywhich propolismay contribute to overall colony
health. Future work should address if disruption of gut micro-
biome homeostasis influences the establishment of pathogens
or growth of opportunistic species and if this is mediated by
differential responses to the antimicrobial activity of propolis
or indirectly through the bees’ physiological responses to pro-
polis in the hive environment. Additionally, we have identified
candidate taxa for future functional investigations that may
help to further understand complex microbial dynamics
involved with regulating the health of honeybee colonies.

Data accessibility. The data underlying this study are available from
Dryad: https://doi.org/10.5061/dryad.33518g8 [43].

Authors’ contributions. The study was designed by R.S.B., M.S.F. and M.S.
Sample collection and preparation were done by R.S.B. and M.S.
Sequencing data were analysed by P.S., and results were interpreted
by P.S., M.S.F. and V.R. P.S., M.S.F. and V.R. wrote the manuscript
and all authors provided edits and approved the manuscript. All
authors agree to be held accountable for the context herein.

Competing interests. The authors have no competing interests. Any men-
tion of trade names or commercial products in does not imply a
recommendation or endorsement by the USDA. USDA is an equal
opportunity provider and employer.

Funding. Funding for this work was provided to M.S. by NSFIOS-
1256992, to M.S. and M.S.F. by USDA-NIFA2018-67013-27532, and
to a USDA postdoctoral fellowship to M.S.F.

Acknowledgements. We thank Irene Newton for initial method consul-
tations and the thoughtful anonymous reviewers for their comments
that significantly improved the final version of this manuscript.

References

1. Simone-Finstrom M, Spivak M. 2010 Propolis and
bee health: the natural history and significance of

resin use by honey bees. Apidologie 43, 25–311.
(doi:10.1051/apido/2010016)

2. Meyer W, Ulrich W. 1956 ’Propolis bees’
and their activities. Bee World 37,

royalsocietypublishing.org/journal/rsbl
Biol.Lett.16:20200003

4

https://doi.org/10.5061/dryad.33518g8
https://doi.org/10.5061/dryad.33518g8
http://dx.doi.org/10.1051/apido/2010016


25–36. (doi:10.1080/0005772X.1956.
11094916)

3. Cremer S, Armitage SA, Schmid-Hempel P. 2007
Social immunity. Curr. Biol. 17, R693–R702. (doi:10.
1016/j.cub.2007.06.008)

4. Evans JD, Spivak M. 2010 Socialized medicine:
individual and communal disease barriers in honey
bees. J. Invertebr. Pathol. 103(Suppl 1), S62–S72.
(doi:10.1016/j.jip.2009.06.019)

5. Simone-Finstrom M. 2017 Social immunity and the
superorganism: behavioral defenses protecting honey
bee colonies from pathogens and parasites. Bee World
94, 21–29. (doi:10.1080/0005772X.2017.1307800)

6. Simone M, Evans JD, Spivak M. 2009 Resin collection
and social immunity in honey bees. Evolution 63,
3016–3022. (doi:10.1111/j.1558-5646.2009.00772.x)

7. Pusceddu M, Piluzza G, Theodorou P, Buffa F, Ruiu
L, Bullitta S, Floris I, Satta A. 2019 Resin foraging
dynamics in Varroa destructor-infested hives: a case
of medication of kin? Insect Sci. 26, 297–310.
(doi:10.1111/1744-7917.12515)

8. Simone-Finstrom MD, Spivak M. 2012 Increased
resin collection after parasite challenge: a case of
self-medication in honey bees? PLoS ONE 7, e34601.
(doi:10.1371/journal.pone.0034601)

9. Spivak M, Goblirsch M, Simone-Finstrom M. 2019
Social-medication in bees: the line between
individual and social regulation. Curr. Opin. Insect.
Sci. 33, 49–55. (doi:10.1016/j.cois.2019.02.009)

10. Borba RS, Spivak M. 2017 Propolis envelope in Apis
mellifera colonies supports honey bees against the
pathogen, Paenibacillus larvae. Sci. Rep. 7, 11429.
(doi:10.1038/s41598-017-11689-w)

11. Nicodemo D, Malheiros EB, De Jong D, Couto RHN. 2013
Increased brood viability and longer lifespan of
honeybees selected for propolis production. Apidologie
45, 269–275. (doi:10.1007/s13592-013-0249-y)

12. Langenheim JH. 2003 Plant resins: chemistry,
evolution, ecology, and ethnobotany. Portland,
Oregon: Timberland Press.

13. Patra AK, Saxena J. 2009 Dietary phytochemicals as
rumen modifiers: a review of the effects on
microbial populations. Antonie Van Leeuwenhoek
96, 363–375. (doi:10.1007/s10482-009-9364-1)

14. van den Bosch TJM, Welte CU. 2017 Detoxifying
symbionts in agriculturally important pest insects.
Microb. Biotechnol. 10, 531–540. (doi:10.1111/
1751-7915.12483)

15. Zeng Z, Zhang S, Wang H, Piao X. 2015 Essential oil
and aromatic plants as feed additives in non-
ruminant nutrition: a review. J. Anim. Sci.
Biotechnol. 6, 7. (doi:10.1186/s40104-015-0004-5)

16. Ribiere C, Hegarty C, Stephenson H, Whelan P, O’Toole
PW. 2019 Gut and whole-body microbiota of the honey
bee separate thriving and non-thriving hives. Microb.
Ecol. 78, 195–205. (doi:10.1007/s00248-018-1287-9)

17. Kwong WK, Mancenido AL, Moran NA. 2017
Immune system stimulation by the native gut
microbiota of honey bees. R. Soc. Open Sci. 4,
170003. (doi:10.1098/rsos.170003)

18. Kwong WK, Medina LA, Koch H, Sing K-W, Soh EJY,
Ascher JS, Jaffé R, Moran NA. 2017 Dynamic
microbiome evolution in social bees. Sci. Adv. 3,
e1600513. (doi:10.1126/sciadv.1600513)

19. Kwong WK, Engel P, Koch H, Moran NA. 2014 Genomics
and host specialization of honey bee and bumble bee
gut symbionts. Proc. Natl Acad. Sci. USA 111,
11 509–11 514. (doi:10.1073/pnas.1405838111)

20. Yun J-H, Lee J-Y, Hyun D-W, Jung M-J, Bae J-W. 2017
Bombella apis sp. nov., an acetic acid bacterium isolated
from the midgut of a honey bee. 67, 2184–2188.
(https://doi.org/10.1099/ijsem.0.001921)

21. Anderson KE, Carroll MJ, Sheehan T, Lanan MC, Mott
BM, Maes P, Corby-Harris V. 2014 Hive-stored pollen
of honey bees: many lines of evidence are consistent
with pollen preservation, not nutrient conversion.
Mol. Ecol. 23, 5904–5917. (doi:10.1111/mec.12966)

22. Anderson KE, Ricigliano VA. 2017 Honey bee gut
dysbiosis: a novel context of disease ecology. Curr.
Opin. Insect Sci. 22, 125–132. (doi:10.1016/j.cois.
2017.05.020)

23. Borba RS, Klyczek KK, Mogen KL, Spivak M.
2015 Seasonal benefits of a natural propolis
envelope to honey bee immunity and colony
health. J. Exp. Biol. 218(Pt 22), 3689-3699.
(doi:10.1242/jeb.127324)

24. Human H et al. 2015 Miscellaneous standard
methods for Apis mellifera research. J. Apicultural
Res. 52, 1–53. (doi:10.3896/IBRA.1.52.4.10)

25. Borba RS. 2015 Constitutive and therapeutic
benefits of plant resins and a propolis envelope to
honey bee, Apis mellifera L., immunity and health.
PhD thesis, University of Minnesota, Ann Arbor, MA.
See http://hdl.handle.net/11299/175707.

26. Martinson VG, Moy J, Moran NA. 2012 Establishment
of characteristic gut bacteria during development of
the honeybee worker. Appl. Environ. Microbiol. 78,
2830–2840. (doi:10.1128/AEM.07810-11)

27. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D,
Lozupone CA, Turnbaugh PJ, Fierer N, Knight R.
2011 Global patterns of 16S rRNA diversity at a
depth of millions of sequences per sample. Proc.
Natl Acad. Sci. USA 108(Suppl 1), 4516–4522.
(doi:10.1073/pnas.1000080107)

28. Tarpy DR, Delaney DA, Seeley TD. 2015 Mating
frequencies of honey bee queens (Apis mellifera L.)
in a population of feral colonies in the Northeastern
United States. PLoS ONE 10, e0118734. (doi:10.
1371/journal.pone.0118734)

29. Bolyen E et al. 2018 QIIME 2: reproducible,
interactive, scalable, and extensible microbiome
data science. PeerJ Preprints 6, e27295v2.

30. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW,
Johnson AJ, Holmes SP. 2016 DADA2: high-resolution
sample inference from Illumina amplicon data.
Nat. Methods 13, 581–583. (doi:10.1038/
nmeth.3869)

31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza
P, Peplies J, Glöckner FO. 2013 The SILVA ribosomal RNA
gene database project: improved data processing and

web-based tools. Nucleic Acids Res. 41(Database issue),
D590–D596. (doi:10.1093/nar/gks1219)

32. Mandal S, Van Treuren W, White RA, Eggesbo M,
Knight R, Peddada SD. 2015 Analysis of composition
of microbiomes: a novel method for studying
microbial composition. Microb. Ecol. Health Dis. 26,
27663. (doi:10.3402/mehd.v26.27663)

33. Morton JT et al. 2017 Balance trees reveal microbial
niche differentiation. mSystems 2, e00161-16.

34. Jones JC, Fruciano C, Marchant J, Hildebrand F,
Forslund S, Bork P, Engel P, Hughes WO. 2018 The
gut microbiome is associated with behavioural task
in honey bees. Insectes Soc. 65, 419–429. (doi:10.
1007/s00040-018-0624-9)

35. Moran NA, Hansen AK, Powell JE, Sabree ZL. 2012
Distinctive gut microbiota of honey bees assessed using
deep sampling from individual worker bees. PLoS ONE
7, e36393. (doi:10.1371/journal.pone.0036393)

36. Horton MA, Oliver R, Newton IL. 2015 No apparent
correlation between honey bee forager gut
microbiota and honey production. PeerJ 3, e1329.
(doi:10.7717/peerj.1329)

37. Koch H, Schmid-Hempel P. 2012 Gut microbiota
instead of host genotype drive the specificity in the
interaction of a natural host–parasite system. Ecol.
Lett. 15, 1095–1103. (doi:10.1111/j.1461-0248.
2012.01831.x)

38. Engel P, Martinson VG, Moran NA. 2012 Functional
diversity within the simple gut microbiota
of the honey bee. Proc. Natl Acad. Sci. USA 109,
11 002–11 007. (doi:10.1073/pnas.1202970109)

39. Kwong WK, Moran NA. 2013 Cultivation and
characterization of the gut symbionts of honey bees
and bumble bees: description of Snodgrassella alvi
gen. nov., sp. nov., a member of the family
Neisseriaceae of the Betaproteobacteria, and
Gilliamella apicola gen. nov., sp. nov., a member
of Orbaceae fam. nov., Orbales ord. nov., a sister
taxon to the order ’Enterobacteriales’ of the
Gammaproteobacteria. Int. J. Syst. Evol.
Microbiol. 63(Pt 6), 2008-2018. (doi:10.1099/ijs.0.
044875-0)

40. Kesnerova L, Moritz R, Engel P. 2016 Bartonella apis
sp. nov., a honey bee gut symbiont of the class
Alphaproteobacteria. Int. J. Syst. Evol. Microbiol. 66,
414–421. (doi:10.1099/ijsem.0.000736)

41. Anderson KE, Sheehan TH, Eckholm BJ, Mott BM,
DeGrandi-Hoffman G. 2011 An emerging paradigm
of colony health: microbial balance of the honey
bee and hive (Apis mellifera). Insectes Soc. 58,
431–444. (doi:10.1007/s00040-011-0194-6)

42. Zheng H, Powell JE, Steele MI, Dietrich C, Moran
NA. 2017 Honeybee gut microbiota promotes host
weight gain via bacterial metabolism and hormonal
signaling. Proc. Natl Acad. Sci. USA 114,
4775–4780. (doi:10.1073/pnas.1701819114)

43. Saelao P, Borba RS, Ricigliano V, Spivak M, Simone-
Finstrom M. 2020 Data from: Honeybee microbiome is
stabilized in the presence of propolis. Dryad Digital
Repository. (https://doi.org/10.5061/dryad.33518g8)

royalsocietypublishing.org/journal/rsbl
Biol.Lett.16:20200003

5

http://dx.doi.org/10.1080/0005772X.1956.11094916
http://dx.doi.org/10.1080/0005772X.1956.11094916
http://dx.doi.org/10.1016/j.cub.2007.06.008
http://dx.doi.org/10.1016/j.cub.2007.06.008
http://dx.doi.org/10.1016/j.jip.2009.06.019
http://dx.doi.org/10.1080/0005772X.2017.1307800
http://dx.doi.org/10.1111/j.1558-5646.2009.00772.x
http://dx.doi.org/10.1111/1744-7917.12515
http://dx.doi.org/10.1371/journal.pone.0034601
http://dx.doi.org/10.1016/j.cois.2019.02.009
http://dx.doi.org/10.1038/s41598-017-11689-w
http://dx.doi.org/10.1007/s13592-013-0249-y
http://dx.doi.org/10.1007/s10482-009-9364-1
http://dx.doi.org/10.1111/1751-7915.12483
http://dx.doi.org/10.1111/1751-7915.12483
http://dx.doi.org/10.1186/s40104-015-0004-5
http://dx.doi.org/10.1007/s00248-018-1287-9
http://dx.doi.org/10.1098/rsos.170003
http://dx.doi.org/10.1126/sciadv.1600513
http://dx.doi.org/10.1073/pnas.1405838111
https://doi.org/10.1099/ijsem.0.001921
http://dx.doi.org/10.1111/mec.12966
http://dx.doi.org/10.1016/j.cois.2017.05.020
http://dx.doi.org/10.1016/j.cois.2017.05.020
http://dx.doi.org/10.1242/jeb.127324
http://dx.doi.org/10.3896/IBRA.1.52.4.10
http://hdl.handle.net/11299/175707
http://dx.doi.org/10.1128/AEM.07810-11
http://dx.doi.org/10.1073/pnas.1000080107
http://dx.doi.org/10.1371/journal.pone.0118734
http://dx.doi.org/10.1371/journal.pone.0118734
http://dx.doi.org/10.1038/nmeth.3869
http://dx.doi.org/10.1038/nmeth.3869
http://dx.doi.org/10.1093/nar/gks1219
http://dx.doi.org/10.3402/mehd.v26.27663
http://dx.doi.org/10.1007/s00040-018-0624-9
http://dx.doi.org/10.1007/s00040-018-0624-9
http://dx.doi.org/10.1371/journal.pone.0036393
http://dx.doi.org/10.7717/peerj.1329
http://dx.doi.org/10.1111/j.1461-0248.2012.01831.x
http://dx.doi.org/10.1111/j.1461-0248.2012.01831.x
http://dx.doi.org/10.1073/pnas.1202970109
http://dx.doi.org/10.1099/ijs.0.044875-0
http://dx.doi.org/10.1099/ijs.0.044875-0
http://dx.doi.org/10.1099/ijsem.0.000736
http://dx.doi.org/10.1007/s00040-011-0194-6
http://dx.doi.org/10.1073/pnas.1701819114
https://doi.org/10.5061/dryad.33518g8

	Honeybee microbiome is stabilized in the presence of propolis
	Honeybee microbiome is stabilized in the presence of propolis
	Introduction
	Methods
	Environmental parameters and study design
	Sample processing and DNA extraction
	16S rRNA gene amplicons community analysis and data filtering

	Results
	Bacterial sequences and classification
	Taxa identification
	Microbial community differences
	Taxa differences

	Discussion
	Conclusion
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	Acknowledgements
	References


