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A B S T R A C T

Managed honey bee (Apis mellifera) populations are currently facing unsustainable losses due to a variety of
factors. Colonies are challenged with brood pathogens, such as the fungal agent of chalkbrood disease, the
microsporidian gut parasite Nosema spp., and several viruses. These pathogens may be transmitted horizontally
from worker to worker, vertically from queen to egg and via vectors like the parasitic mite, Varroa destructor.
Despite the fact that these pathogens are widespread and often harbored in wax comb that is reused from year to
year and transferred across beekeeping operations, few, if any, universal treatments exist for their control. In
order to mitigate some of these biological threats to honey bees and to allow for more sustainable reuse of
equipment, investigations into techniques for the sterilization of hive equipment and comb are of particular
significance. Here, we investigated the potential of gamma irradiation for inactivation of the fungal pathogen
Ascosphaera apis, the microsporidian Nosema ceranae and three honey bee viruses (Deformed wing virus [DWV],
Black queen cell virus [BQCV], and Chronic bee paralysis virus [CBPV]), focusing on the infectivity of these pa-
thogens post-irradiation. Results indicate that gamma irradiation can effectively inactivate A. apis, N. ceranae,
and DWV. Partial inactivation was noted for BQCV and CBPV, but this did not reduce effects on mortality at the
tested, relatively high doses. These findings highlight the importance of studying infection rate and symptom
development post-treatment and not simply rate or quantity detected. These findings suggest that gamma ir-
radiation may function as a broad treatment to help mitigate colony losses and the spread of pathogens through
the exchange of comb across colonies, but raises the question why some viruses appear to be unaffected. These
results provide the basis for subsequent studies on benefits of irradiation of used comb for colony health and
productivity.

1. Introduction

In recent years, honey bee populations have been under a near
constant threat of various pathogens, parasites, pests and anthro-
pogenic stressors (Cox-Foster et al., 2007; vanEngelsdorp and Meixner,
2010). While treatments currently exist for some of these pathogens and
parasites, there is the continual risk of the development of resistance to
chemical treatments and contamination of hive products. For example,
the causative bacterial agent of the larval disease American foulbrood
(AFB; Paenibacillus larvae) exhibits widespread resistance to antibiotic
treatment (Evans, 2003) and treatment residues persist in honey, which
is a human health concern (reviewed in Genersch (2010)). In addition,
currently registered antibiotic treatments for some pathogens are only
moderately effective (Williams et al., 2008) or can possibly make the
infection worse, as seen in the case of the microsporidian gut parasite

Nosema ceranae (Huang et al., 2013).
Complicating the fact that reliable and safe treatments do not cur-

rently exist for the treatment of many honey bee diseases, is the con-
tinual reuse and exchange or transfer of old equipment within and
across beekeeping operations, which can lead to the spread of various
pathogens and parasites (Cox-Foster et al., 2007; Fries and Camazine,
2001; Pettis et al., 2007; vanEngelsdorp et al., 2009a; vanEngelsdorp
and Meixner, 2010). The fungal agent of the larval disease chalkbrood
(CB; Ascosphaera apis) produces spores that can remain viable in wax
comb and can be spread throughout a colony and among colonies when
adult bees clean the comb and transfer spores to developing larvae
(Aronstein and Murray, 2010; Flores et al., 2005). The same is true for
spores of Nosema spp. (Fries, 1988; Higes et al., 2010) and AFB (Hansen
and Brødsgaard, 1999; Haseman, 1961). Additionally, recent evidence
suggests that at least some viruses can be found in wax comb ((Colwell
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et al., 2017); Simone-Finstrom, Rinkevich and de Guzman, preliminary
data), which could potentially serve as a point of infection. Investiga-
tions regarding treatments that better facilitate the use of older comb
have been of significant interest, particularly with respect to AFB-in-
fected comb as the current standard practice is to burn contaminated
equipment (Hansen and Brødsgaard, 1999). Therefore, treatments that
work against multiple pathogens and parasites, especially viruses,
where there are no treatments available for honey bees, can have a
significant positive impact on the health and productivity of honey bee
colonies and thus, profitability for beekeeping operations.

One method that has been explored over the years is the use of
gamma irradiation for sterilization of hive components (Hornitzky,
1994). Gamma irradiation is commonly used throughout the agri-
cultural and human health industries to sterilize equipment and food
products (ISO#13409, 2002; Sommers, 2012). Much of the previous
work on sterilization of bee equipment has focused on its effectiveness
against AFB-contaminated comb. Several studies have shown that a
dose of 10 kGy is an effective treatment to inactivate AFB spores for the
reuse of equipment (Baggio et al., 2005; De Guzman et al., 2011;
Gochnauer and Hamilton, 1970; Gosselin and Charbonneau, 1990).
More recent work has provided some evidence that gamma irradiation
may prevent colony losses when bees are hived on old comb that has
been treated (Cox-Foster et al., 2007; Pettis et al., 2007). Other research
has focused on the use of gamma irradiation to sterilize bee-collected
pollen before feeding it to commercially reared bumblebees to limit the
spread of pathogens. These studies have shown that gamma irradiation
can inactivate viruses (Meeus et al., 2014) and reduce the frequency of
detecting various pathogen and parasite DNA/RNA in pollen (including
DWV, BQCV, and Nosema; Graystock et al., 2016). However, gamma
irradiation does not eliminate or completely reduce infectivity of all
pathogens, including N. ceranae and the parasitic protozoan Apicystis
bombi, in particular (Graystock et al., 2016). Incomplete inactivation
has also been noted for the bacterial agent that causes the larval disease
European foulbrood (Pankiw et al., 1970). Conditions of irradiation,
including sample preparation, can also impact the ability of gamma
irradiation to inactivate certain types of viruses (Hume et al., 2016;
Thomas et al., 1981). With this in mind, assays that examine infectivity
post-irradiation are of critical importance to understand the relevance
of such a treatment.

The aim of the current study was to investigate the potential of
gamma irradiation to inactivate multiple honey bee pathogens that can
be found in hive products. Since much of the previous work regarding
honey bees have focused on bacterial pathogens, here we examined the
infectivity of CB (a fungal pathogen), N. ceranae (a microsporidian gut
parasite), the two most prevalent bee viruses—Deformed wing virus
(DWV) and Black queen cell virus (BQCV) (Chen and Siede, 2007;
Traynor et al., 2016), and a potential emerging viral threat—Chronic
bee paralysis virus (CBPV) (Ribière et al., 2010; Traynor et al., 2016).
These pathogens impact different honey bee life stages and represent a
larger swath of the potential infections that honey bees face. Under-
standing how gamma irradiation may reduce the infectivity of this suite
of pathogens provides supporting evidence for the use of gamma irra-
diation to sterilize bee equipment.

2. Materials and methods

Three batches of each of the following pathogen/parasite solutions
were prepared for the following treatments: (1) untreated stock solu-
tion, not transported nor irradiated but stored at 4 °C until use (stock);
(2) stock solution transported to the irradiation facility without being
irradiated (transported); and (3) stock solution transported to the ir-
radiation facility for irradiation (irradiated). The transportation and
process of irradiation were completed over 5 days in Spring 2016 and
over 3 days in Summer 2017.

The irradiation treatment was conducted at an USDA/APHIS certi-
fied phytosanitary treatment facility (Gateway America, Gulfport, MS).

Stock solutions were contained in 1.5mL microcentrifuge tubes in
cardboard boxes (transported) or in ziploc bags stapled to the inside
wall of a commercial, wooden Langstroth hive box (irradiated). The
transported stock solutions remained in the same warehouse where the
irradiated solutions were kept and treated and were maintained at
28 °C. Thereafter, the transported solutions were brought to the la-
boratory at the same time as the irradiated group. The irradiated stock
solutions were exposed to 25 kGy of gamma irradiation delivered over
9 h 45min, which is a standard dose used for sanitization purposes
(ISO#13409, 2002).

2.1. Chalkbrood (CB)

Chalkbrood (Ascosphaera apis) spores were collected following well-
established methods (Aronstein et al., 2015; Aronstein and Murray,
2010). Briefly, an A. apis strain (BBR) isolated from previous work
(Aronstein and Murray, 2010) was grown on YGPSA (1% yeast extract,
1% glucose, 0.1 M KH2PO4, 1% soluble starch, and 2% agar) solid
culture medium with 100 μg/mL ampicillin sodium salt and 6 μg/mL
streptomycin sulfate. Plates were incubated at 33 °C for 7 days and then
at room temperature for an additional 3 days. Ascospores, the sexual
stage of ascomycetes fungi, were harvested from culture plates and
stored at 4 °C.

2.1.1. Growth assessment
After the vials containing CB returned from the irradiation facility,

spores were tested for viability by plating ∼104 spores following the
same protocol used to culture the spores. Three plates were prepared for
each of the three treatments (stock, transported, and irradiated) and
monitored for growth and sporulation for 2 weeks at 33 °C.

2.1.2. Infectivity of CB spores in in vitro-reared larvae
To examine infectivity, individual larvae were inoculated in vitro

with CB spores. In vitro rearing of larvae followed modifications of
standard protocols (Aupinel et al., 2005; Crailsheim et al., 2013). First
instar larvae were grafted to plastic queen cell cups and mass provi-
sioned with 190mg of larval rearing diet (50% royal jelly, 6% glucose,
6% fructose, 1% yeast extract). Preliminary work has found 190mg to
be the optimum amount of diet needed by a first instar larva to com-
plete its development through eclosion to an adult worker bee (Simone-
Finstrom, unpublished data). Larvae were treated topically near the
mouthparts with 104 CB spores in 5 μL water just after grafting. Control
larvae were treated with water only. There were a total of four treat-
ments: control (n= 24), stock (n=16), transported (n=16), and ir-
radiated (n=32). Larvae were maintained at 34 °C and 85% relative
humidity and monitored daily for survival and development of symp-
toms until pupation.

Differences in survival were compared between the 4 treatment
groups using the Kaplan-Meier survival analysis (JMP Pro 12), followed
by post hoc pair-wise analysis when there was a significant effect from
treatment.

2.2. Black queen cell virus (BQCV)

Ten symptomatic queen larvae collected in early Spring 2016 and
stored at −80 °C were homogenized in 10mL sterilized phosphate
buffered saline (PBS). The viral solution was semi-purified (de Miranda
et al., 2013) by centrifugation in a 15mL tube at 4700g for 20min at
4 °C. The supernatant was filtered with 0.22 μm syringe filter, and di-
vided into thirds and stored at 4 °C until use.

Identification and quantification of virus in the solution was con-
firmed by qPCR following standard methods (Boncristiani et al., 2013;
de Miranda et al., 2013). The region encoding a capsid protein of BQCV
was amplified using Forward—TTT AGA GCG AAT TCG GAA ACA and
Reverse—GGC GTA CCG ATA AAG ATG GA primers [(vanEngelsdorp
et al., 2009b); (HQ655494.1)].
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2.2.1. Infectivity of BQCV in in vitro-reared larvae
Infectivity of BQCV was first examined in larvae reared in vitro,

which is the main stage of development affected by this virus. Larvae
were reared as described above (Section 2.1.2), with one exception. In
this case, larvae were mass provisioned with 235mg of larval diet, an
amount previously found to produce bees that are queen-like under in
vitro conditions (Simone-Finstrom, unpublished data). The viral solu-
tions (stock, transported and irradiated) were diluted 1:125 in sterile
PBS, which corresponded to 1010 viral copies, and 5 μL was topically
applied near the mouthparts of each larva. Control larvae were treated
with sterile PBS. Twenty larvae per treatment (control, stock, trans-
ported, and irradiated) were monitored daily for mortality and pre-
sentation of symptoms for 12 days. Survival data were analyzed as
above (Section 2.1.2).

2.2.2. Virus injection assay
To examine infectivity and the ability of BQCV to replicate, white-

eyed worker pupae from a single source colony were injected with the
viral solutions from the different treatment groups. Pupae were injected
with 3 μL of 1010 BQCV copies (n=35 per treatment) or 108 BQCV
copies (n=15 per treatment) for each of the three treatment solutions
(stock, transported, or irradiated) using a Hamilton syringe fitted with a
30G needle at an infusion rate of 1 μL/s using a Micro4™ Microsyringe
Pump Controller adapted from standard methods (Boncristiani et al.,
2013; de Miranda et al., 2013). PBS injections (control) were completed
on another 35 pupae. Pupae were maintained on filter paper in petri
dishes at 34 °C and 80% relative humidity. Mortality was assessed daily
for 3 days, after which all pupae were frozen at −80 °C for analysis of
viral replication by qPCR.

Eight pupae per treatment (control, stock, transported, and irra-
diated) were assessed for viral loads 3-days post-injection in 2016. RNA
extractions were completed using the Maxwell® 16 LEV simplyRNA
system (Promega) and cDNA template was generated from 2 μg of total
RNA using the QuantiTect Reverse Transcription Kit (Qiagen) following
the manufacturer’s instructions. qPCR was performed in triplicate with
a QuantStudio™ 6 Flex System (Applied Biosystems) using 2 μL of cDNA
template per 20 μL reaction containing 1X PowerUP™ SYBER® Green
(ThermoFisher Scientific). The thermal profile was as follows: 2 min at
50 °C then 2min at 95 °C, followed by 45 cycles of 95 °C for 15 sec,
53.5 °C for 20 sec, and 72 °C for 30 s. A melt-curve dissociation analysis
completed each run.

Black queen cell virus titers were determined using standard curves
generated from plasmid standards containing the sequence listed above
(generated by GeneArt, Invitrogen). Linearized plasmid standards
containing 105 to 1012 copies per reaction were used as templates to
assess primer efficiency and quantify the amount of virus following
standard practices (Cavigli et al., 2016; Hou et al., 2010). Linear
standard equations were generated using the log10 of the initial plasmid
copy number. Differences in copy number across treatments were then
expressed as the ratio of BQCV in virus-injected samples to the average
level of BQCV in PBS controls, log-transformed and analyzed via one-
way ANOVA (JMP Pro 12).

A second trial in 2017 was conducted to confirm mortality results.
As described above, pupae from two unrelated colonies were injected
with 1010 BQCV copies and monitored for 7 days after injection.

2.3. Deformed wing virus (DWV)

Deformed wing virus was obtained using a similar protocol that was
used to isolate BQCV. Twenty bees symptomatic for DWV were
homogenized in 20mL sterile PBS. Deformed wing virus was semi-
purified as in Section 2.2 and the identity of the virus was confirmed via
qPCR and maintained at 4 °C until use.

In 2016, DWV infectivity and replication was examined using
methods and analysis as described above (Section 2.2.2). The region of
DWV amplified was based on the following primers: Forward—GAG

ATT GAA GCG CAT GAA CA; Reverse—TGA ATT CAG TGT CGC CCA
TA [(vanEngelsdorp et al., 2009b); (AY292384.1)]. Briefly, pupae were
injected with 109 (n= 35 per treatment) or 107 viral copies (n= 15 per
treatment) of viral solution or sterile PBS only (n= 35). Differences in
copy number across treatments were expressed as the ratio of DWV in
virus-injected samples to the average of DWV in PBS-injected controls,
log transformed and analyzed by Welch’s ANOVA due to unequal var-
iances across treatment groups.

Mortality results were confirmed in 2017 by injecting pupae from
two unrelated colonies with 1010 DWV copies or PBS alone, and mon-
itored for 7 days post-injection for presentation of symptoms at emer-
gence.

2.4. Chronic bee paralysis virus (CBPV)

Chronic bee paralysis virus was also obtained as previously de-
scribed (Section 2.2). In 2017, 20 bees symptomatic for CBPV were
homogenized in 20mL sterile PBS. Chronic bee paralysis virus was
semi-purified and the identity of the virus was confirmed via qPCR and
maintained at 4 °C until use. A region of the CBPV genome was am-
plified using the following primers: Forward—CGC AAG TAC GCC TTG
ATA AAG AAC; Reverse—ACT ACT AGA AAC TCG TCG CTT CG
[(Blanchard et al., 2007); (EU122229.1)]. To examine infectivity and
replication, 30 pupae per treatment (stock, transported, and irradiated)
were injected with a solution containing 107 CBPV copies. Test pupae
were obtained from two colonies. All but 4 of the 180 CBPV-injected
pupae were necrotic 24 h post-injection. Pupae were frozen at −80 °C
for analysis of viral replication. Fifteen pupae from each of two colonies
per treatment were analyzed for viral load. Differences in copy number
across treatments were expressed as the ratio of CBPV in the virus-in-
jected samples to the average level of CBPV in PBS-injected controls,
log-transformed, and analyzed via one-way ANOVA with colony source
included as a random effect.

2.5. Nosema ceranae

Midguts from 40 foragers were collected from a local colony with a
high level of N. ceranae infection. Midguts were macerated in 5mL
sterile water producing a solution that contained ∼2.9×104 spores/
μL. The spore solution was maintained at 4 °C. The identity of N. ceranae
spores was confirmed by PCR following standard methods (Fries et al.,
2013).

2.5.1. Infectivity of Nosema ceranae in caged bees
To examine the infectivity of N. ceranae spores, an analysis of spore

reproduction in newly emerged bees was conducted. Each of the spore
solutions was diluted 1:1 in 50% sucrose solution. Concentrations of
spore solutions were reconfirmed prior to inoculation and the following
doses were given in 5 μL to 30 newly emerged bees per treatment—-
stock: 42,800 spores; transported: 37,600 spores; irradiated: 38,200
spores; control (sugar syrup): 0 spores.

Bees were placed in cages and given sucrose syrup and water ad
libitum. Another 20 untreated bees were paint-marked on the thorax
and added to each cage to increase the population in the cages to a
sustainable level. Bees were maintained at 30 °C with ∼65% relative
humidity in a controlled incubator (Huang et al., 2014). After 7 days,
the experiment was terminated to assess Nosema infectivity and re-
production. Bees were stored at −20 °C until spore loads were de-
termined using standard methods (Fries et al., 2013). Those performing
the spore counts were blind to the treatment designations. Analysis of
Nosema infection was performed by calculating the log ratio of the 7-
day spore load to the original spore dose to account for the slight dif-
ference in the initial doses. The difference in the change in spore load
due to treatment was analyzed by Welch ANOVA due to unequal var-
iances across treatment groups (JMP Pro 12).
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2.5.2. Germination assay
Solutions containing N. ceranae spores were shipped to the

University of Minnesota, Twin Cities, to determine spore viability.
Solutions were stored in the dark at room temperature for 6 weeks until
the assay could be completed. To conduct the germination assay, the
solutions were vortexed and 2 μL of each was placed onto a glass slide.
This was replicated 6 times per solution. The slides were allowed to air-
dry for 10min at room temperature in a laminar flow hood. Then, 10 μL
of a 0.5M NaCl/0.5 NaHCO3 (pH to 6.0 with phosphoric acid) germi-
nation solution was placed over the dried spot. The slides were cover-
slipped and incubated at 37 °C and 90% relative humidity for 30min.
After 30min, the number of germinated spores was counted by evi-
dence of an extruded polar filament at 400× with phase contrast mi-
croscopy. Ten different fields of view were chosen at random, and 10
spores within each field were counted along a transect. A total of 100
spores were counted per slide with a total of 600 spores being counted
per treatment. Counts were conducted blindly with respect to treat-
ment. Differences due to treatment in percent germination of spores
within the 10 fields of view were analyzed by Welch ANOVA due to
unequal variances across treatment groups (JMP Pro 12).

3. Results

3.1. Chalkbrood

Chalkbrood spore development and normal growth of cultures of A.
apis were observed for spores that were maintained at 4 °C (stock) and
those that were transported, but not the irradiated spores (Fig. 1A).
Similarly, larvae that were inoculated with irradiated spores had higher
survival and did not develop symptoms of CB infection, unlike those fed
stock or transported spores (Fig. 1B). Significant differences in lifespan
were detected among larvae inoculated with stock or transported A.
apis spores versus larvae fed spores that were irradiated or no spores
(control) (χ2= 67.68, df= 3, P < 0.0001; Fig. 2).

3.2. Black queen cell virus

3.2.1. Infectivity of BQCV in in vitro-reared larvae
Larvae were inoculated with solutions containing stock, trans-

ported, and irradiated BQCV or a control solution without virus.
Mortality and development of symptoms were assessed for 12 days.
Most mortality was asymptomatic, though some treated larvae did ex-
hibit typical BQCV symptoms (Simone-Finstrom, personal observa-
tions). Overall, control mortality was higher than was seen in the CB
assays (Fig. 2), largely due to the increased amount of diet as has been

noted in previous research (Linksvayer et al., 2011; Simone-Finstrom,
unpublished data). Significant differences in lifespan were seen among
larvae inoculated with stock or transported solutions containing BQCV
versus larvae inoculated with irradiated or control solutions
(χ2= 9.69, df= 3, P=0.021; Fig. 3). The mean time to death was
213.6 ± 21.5 h for BQCV stock, 235.2 ± 17.1 h for the transported
solution, 276 ± 6.0 h for the irradiated solution, and 274.8 ± 5.6 h
for the PBS control treated larvae.

3.2.2. Virus injection assay with BQCV
In 2016, pupae injected with stock, transported, or irradiated so-

lutions containing BQCV exhibited varying levels of survival 3 d post-
injection and each solution caused arrested development and acute
mortality in some individuals (see Table 1 and Fig. 4A). The proportion
of surviving pupae injected with the irradiated solution, however, was
higher than that for pupae injected with stock or transported solutions,
though less than pupae injected with PBS alone (χ2= 78.18, df= 6,
P < 0.0001). Post-hoc analysis indicated that this difference was only
for the higher dose (χ2= 16.50, df= 2, P=0.0003), while at the
lower dose all three BQCV solutions produced mortality in equivalent
proportions (χ2= 1.25, df= 3, P < 0.53). In 2017, all pupae injected
with the stock, transported, and irradiated solutions of BQCV were dead
or had arrested development 7 days post-injection (Table 2). Therefore
it is possible that if the mortality was assessed at 7 days post-injection in
2016 those pupae that appeared to be progressing in normal develop-
ment might have actually been in an arrested state and potentially
would have died by 7 days.

There was a significant difference in viral replication across treat-
ments. The amount of BQCV 3 days post-injection, as analyzed in the
2016 samples, was significantly less for the irradiated treatment as

Fig. 1. Growth of Ascosphaera apis in cultures or in in vitro-reared larvae. (A) Growth of
spores in cultures after 96 h. (B) Development of chalkbrood symptoms in a larva treated
with either stock or transported spores versus a larva inoculated with irradiated spores.
Control (inoculated without spores) not pictured.

Fig. 2. Proportion of honey bee larvae surviving over time after inoculation with
chalkbrood spores. Curves with an overlapping bar were not significantly different
(P > 0.05) based on pairwise post hoc analysis.

Fig. 3. Proportion of larvae surviving over time after challenge with BQCV. Curves with
an overlapping bar were not significantly different (P > 0.05) based on pairwise post hoc
analysis.
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Table 1
Pupal mortality 3 days post-injection for 2016 trials. Mortality includes pupae that were
in a state of arrested development (based on lack of developmental progression or no
increased eye pigmentation) or dead (development of necrotic tissue). Results for BQCV-,
DWV-, and control-injected pupae are shown.

Virus Dose Treatment N % Mortality

None PBS Control 35 0%

BQCV 1010 copies Stock 35 80%
108 copies Stock 15 46.7%
1010 copies Transported 35 80%
108 copies Transported 15 60%
1010 copies Irradiated 35 40%
108 copies Irradiated 15 40%

DWV 109 copies Stock 35 100%
107 copies Stock 15 100%
109 copies Transported 35 100%
107 copies Transported 15 100%
109 copies Irradiated 35 0%
107 copies Irradiated 15 0%

Fig. 4. Representative pupae injected with viral solutions. (A) Examples of the arrested
development of pupae injected with stock and transported BQCV solutions 3 days post-
injection versus typical development (e.g. darkening of eye pigmentation) seen in pupae
injected with the irradiated and control solutions. (B) Injection of the DWV stock and
transported solutions caused arrested development at 7 days post-injection, with little
progression beyond the pink-eyed stage, while pupae injected with PBS control and ir-
radiated DWV solutions exhibited normal development and emerged without overt ex-
pression of DWV symptoms.

Table 2
Pupal mortality 7 days post-injection for 2017 trials. Mortality includes pupae that were
in a state of arrested development (based on lack of developmental progression or no
increased eye pigmentation) or dead (development of necrotic tissue). Results for BQCV-,
CBPV-, DWV- and control-injected pupae are shown combining pupae from both colonies
tested as there were no differences seen across colonies. *CBPV mortality was recorded
24 h post-injection.

Virus Dose Treatment N % Mortality

None PBS Control 27 11.1%

BQCV 1010 copies Stock 27 100%
1010 copies Transported 28 100%
1010 copies Irradiated 27 100%

DWV 1010 copies Stock 28 100%
1010 copies Transported 28 100%
1010 copies Irradiated 28 3.6%

CBPV* 107 copies Stock 60 96.7%
107 copies Transported 60 98.3%
107 copies Irradiated 60 98.3%

Fig. 5. Viral loads of bees 3 days post-injection with (A) BQCV or (B) DWV or (C) 24 h
after injection with CBPV. Viral copy number is expressed as the log of the ratio to the
average of the PBS-injected bees. Different letters indicate significant differences across
treatment groups.
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compared to the stock or transported treatments (F2,20= 65.63,
P < 0.0001; Fig. 5A). The mean copy number for each treatment was
as follows: stock—1.1×1010 (n= 8), transported—1.3× 1010

(n=8), irradiated—1.3×108 (n= 7), and PBS—2.9×104 (n= 8).

3.3. Deformed wing virus

Pupae injected with the different DWV solutions exhibited clear
differences with respect to mortality 3 days post-injection in 2016 (see
Table 1; Fig. 4B) and at 7 days post-injection in 2017 (Table 2). All of
the pupae injected with the stock and transported DWV solutions either
experienced arrested development or acute mortality at both higher and
lower concentrations. However, all of the pupae injected with the ir-
radiated DWV solutions or the PBS control solution were alive and
displayed the normal course of development after 3 days in 2016 and
after 7 days in 2017. All of the adult bees injected with PBS and the
irradiated DWV solution were asymptomatic.

In terms of viral replication, there were differences across treat-
ments. The amount of DWV 3 days post-injection was the lowest for
irradiated treatment, followed by the transported treatment and highest
in the stock (F2,19= 916.83, P < 0.0001; Fig. 5B). The mean copy
number for each treatment group was as follows: Stock—5.3×109

(n=8), Transported—1.3×108 (n=8), Irradiated—8.5×104

(n=6), and PBS—4.5× 105 (n=8).

3.4. Chronic bee paralysis virus

All but four pupae injected with the various CBPV solutions devel-
oped necrotic tissue within 24 h post-injection (Table 2). The amount of
CBPV in injected pupae collected 7-days post-injection was lowest in
the irradiation treatment, moderate in the transported treatment and
highest in the stock (F2,70= 22.86, P < 0.0001; see Fig. 5C). The mean
copy number for each treatment group was as follows:
Stock—1.9×1010 (n=23), Transported—6.9× 109 (n= 24), Irra-
diated—3.9×109 (n= 24), and PBS—5.5×103 (n= 16).

3.5. Nosema ceranae

N. ceranae spore loads were assessed 7 days post-inoculation. The
change in number of N. ceranae spores (ratio of spores at 7 days to in-
oculation dose) was significantly different due to treatment
(F2,87= 36.67, P < 0.0001; Fig. 6). Worker bees fed transported
spores exhibited the highest increase in spore load (mean ratio ±
standard deviation: 63.21 ± 91.25), followed by bees fed the stock
solution (18.16 ± 23.40), with the lowest change in Nosema levels in
the irradiated group (0.99 ± 0.82). Twenty un-inoculated bees were

also sampled from cages containing inoculated bees and were found to
be free of Nosema infection (data not shown). Variation across in-
dividuals within treatments was likely, at least in part, due to in-
accuracy during the inoculation procedure, though bees given stock and
transported solutions containing Nosema largely saw increases with
respect to spore levels, while those fed the irradiated solution saw little
change in spore counts.

This finding was corroborated by the germination assay. Showing
the same pattern as the inoculation assay, the percent germination was
highest for the transported spores (39.1 ± 6.2%), followed by the
stock spores (33.8 ± 4.3%), with the irradiated spores having the
lowest (0.48 ± 0.42%) (F2,27= 464.6, P < 0.0001; Fig. 7).

4. Discussion

Previous work on the effectiveness of gamma irradiation against
honey bee pathogens has focused mainly on the bacterial brood pa-
thogen American foulbrood (Baggio et al., 2005; De Guzman et al.,
2011; Gosselin and Charbonneau, 1990). Our results also showed that
gamma irradiation effectively rendered the fungus Ascosphaera apis
(CB), the microsporidian gut parasite Nosema ceranae, and Deformed
wing virus (DWV) inactive and reduced infectivity of Black queen cell
virus (BQCV). We found less of an effect of irradiation on Chronic bee
paralysis virus (CBPV). These results suggest that gamma irradiation has
a relatively broad effect against a suite of honey bee pathogens and
highlights its potential as a treatment to reduce the impacts of patho-
gens harbored in older wax combs that are often exchanged among
colonies and even beekeeping operations.

DWV showed a high level of inactivity in response to gamma irra-
diation. All pupae injected with the irradiated viral solution survived
while none of the pupae injected with the stock or transported viral
solutions survived at either a high or low dose. It is interesting to note
that the same level of inactivation was not seen for BQCV. Despite the
effect of slightly reducing viral replication, irradiation of the BQCV
solution did not completely eliminate negative effects as some pupae
died or experienced arrested development at 3 days post-injection in
2016 and all pupae injected with irradiated BQCV were dead or had
arrested development at 7 days post-injection in the 2017 trials.
Although there were clear effects for BQCV in vitro reared larvae, its
effectiveness was not quite as strong as compared to DWV, CB or N.
ceranae. Alternatively, irradiation had little to no effect against CPBV at
the dose tested since nearly all of the injected pupae developed necrotic
tissue within 24 h. While DWV and BQCV are both positive-sense single-
stranded RNA viruses with icosahedral shape and similar size (de
Miranda et al., 2013), they do have two different forms of genomic
organization and are assigned to the genera Ilfavirus and Cripavirus,
respectively. DWV has a single, large open reading frame, which could
possibly make it more sensitive to irradiation, versus the fact that BQCV
has two non-overlapping open reading frames. In addition, the genome

Fig. 6. Spore loads in Nosema-infected bees 7 days post-inoculation. Spore counts are
presented as the log ratio of Nosema spores after 7 days compared to the original dose. A
value above 0 indicates that Nosema increased in spore number in the honey bee gut,
while a value of 0 indicates no change in spore number from the original inoculum.
Different letters above each box plot indicate significant differences.

Fig. 7. Percent germination of Nosema ceranae spores that were irradiated, transported, or
remained at 4 °C (stock). Different letters above each bar indicate significant differences.
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of DWV is monopartite monocistronic, while BQCV is monopartite bi-
cistronic and this structural difference could result in BQCV being able
to more efficiently translate proteins during cellular invasion and thus,
infection (Chen and Siede, 2007), and therefore it may be more resilient
against damage from irradiation. Chronic bee paralysis virus is unlike
the other RNA honey bee viruses in that it is not isometric, has an
unusual viral capsid, and has a unique genomic structure comprised of
two major RNAs and seven putative open reading frames (Ribière et al.,
2010). These factors could play a role in the limited effectiveness of
gamma irradiation against this virus at the relatively high dose tested. If
anything, it raises interesting questions and makes the clear point that
examining infectivity post-irradiation is key to understanding the use-
fulness of treatments like gamma irradiation for pathogen control. It is
possible that the low intensity and amount of radiation (25 kGy deliv-
ered over 9h45m) was not adequate to inactivate these viruses. Future
experiments to assess the effects of irradiation parameters will yield
more insight into effective methods of virus inactivation.

Similarly, the gamma irradiation treatment did not completely in-
hibit Nosema germination as 3 out of the 600 counted spores had an
extruded polar filament indicating that some irradiated spores may
remain infectious after treatment. Nevertheless, this low level of ger-
mination did not translate into an increase in spores in inoculated bees,
unlike what may be suggested by work with bumblebees fed irradiated
or non-irradiated pollen (Graystock et al., 2016). Perhaps the biological
relevance of inhibited infectivity of treated Nosema spores carries more
significance than germination rate. Similar findings have been shown
for effects of gamma irradiation on N. apis (Liu et al., 1990), which has
largely been replaced by N. ceranae in most of the US in recent years
(Chen et al., 2008; Klee et al., 2007). Regardless, the conditions of ir-
radiation (e.g. sample preparation, length of treatment) and the struc-
ture of the microorganism are factors to consider in how effective
gamma irradiation may be for sterilization, particularly in the case of
viruses (Sullivan et al., 1971). Further studies are needed to test in-
fectivity and perhaps even dose response curves to determine the op-
timum dose of irradiation.

Lack of available therapeutics against viruses, in particular, pro-
vides a strong impetus for the investigation of high dose gamma irra-
diation as treatment of honey bee equipment. This is especially true as
viral infections are major drivers of colony loss (Amiri et al., 2015;
Cornman et al., 2012; Cox-Foster et al., 2007) and wax comb can harbor
viruses ((Colwell et al., 2017); Simone-Finstrom, Rinkevich and de
Guzman, unpublished data). Although RNAi feed treatment has been
tested against Israeli acute bee paralysis virus (Hunter et al., 2010; Maori
et al., 2009), it has not developed into a product accessible to the
apicultural community. The only current “treatment” per se for various
hive-borne diseases is to rotate old comb out of operations (Berry and
Delaplane, 2001; Fries, 1988); however this might not be economically
feasible in some operations. Given this, there has been much interest in
treatments that sterilize comb, in addition to gamma irradiation. Fu-
migation with ethylene oxide was a popular option in the 1970s and
1980s, as it was effective against CB (Gochnauer and Margetts, 1980)
but had variable success against AFB (Gochnauer et al., 1979). Ozone
has also shown to be effective against CB and AFB, but only when
combined with high temperature exposure, which may limit its use-
fulness for wax comb (James, 2011). More recent work has investigated
the possibility of using double inductively coupled low pressure plasma
(DICLPP) as a veterinary approved method of honey bee comb ster-
ilization (Priehn et al., 2016); however, this method of treatment is not
100% effective against bacterial spores and requires operators to use
lower than optimal temperatures during the treatment process. Based
on previous studies indicating broad effects of gamma irradiation
against AFB (Hornitzky, 1994), pollen sterilization (Graystock et al.,
2016; Meeus et al., 2014), and this study, the utility of gamma irra-
diation in beekeeping operations warrants further investigation. It is
key to consider infectivity of post-irradiated materials, however, in all
future studies. Reductions in detection can be noted post-irradiation,

but ultimately the functional infection rate and symptom development
is still the most important factor for positive or negative effects re-
garding treatment, as seen with Nosema (small level of germination
resulted in no infection) and the viruses CBPV and BQCV (reduced
detection but still caused high mortality).

Subsequent studies aim to determine the potential long-term bene-
fits that using gamma-irradiated comb in standard beekeeping practices
can have on colony health and productivity. Since it has been suggested
that placing colonies on irradiated comb may be beneficial (Cox-Foster
et al., 2007; Pettis et al., 2007) and the work here has demonstrated
clear, immediate effects against a suite of honey bee pathogens, the
logical next step is to fully test the effects on actual honey bee colonies.
Experiments are, in fact, underway to address this question.
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