6 research outputs found

    AC/DC: The FERMI FEL Split and Delay Optical Device for Ultrafast X-ray Science

    Get PDF
    Free-electron lasers (FELs) are the most advanced class of light-sources, by virtue of their unique capability to lase high-brightness pulses characterized by wavelengths spanning the extreme-ultraviolet, the soft and hard X-ray spectral domains, as well as by temporal lengths lying in the femtosecond (fs) timescale. The next step to push the current standards in ultrafast X-ray science is strongly linked to the possibility of engineering and exploiting time-resolved experiments exclusively for FELs pulses, ideally having different colors tunable at specific electronic resonance of the chemical elements. At the seeded FERMI FEL (Trieste, Italy) this goal is committed to the optical device known as AC/DC, which stands for the auto correlator/delay creator. AC/DC is designed to double the incoming FEL pulse splitting the photon beam by inserting a grazing incidence flat mirror, thus preserving the spectral and temporal properties, and further delaying one of these two pulses in time. It can independently tune the FEL pulses fluence on the two optical paths by means of solid-state filters, too. Here, we present a detailed description about this optical device. Strong emphasis is dedicated to the AC/DC opto-mechanical design and to the laser-based feedback systems implemented to compensate for any mismatch affecting the FEL optical trajectory, ascribable to both mechanical imperfections and paraxial errors rising during a temporal delay scan

    AC/DC: The FERMI FEL Split and Delay Optical Device for Ultrafast X-ray Science

    No full text
    Free-electron lasers (FELs) are the most advanced class of light-sources, by virtue of their unique capability to lase high-brightness pulses characterized by wavelengths spanning the extreme-ultraviolet, the soft and hard X-ray spectral domains, as well as by temporal lengths lying in the femtosecond (fs) timescale. The next step to push the current standards in ultrafast X-ray science is strongly linked to the possibility of engineering and exploiting time-resolved experiments exclusively for FELs pulses, ideally having different colors tunable at specific electronic resonance of the chemical elements. At the seeded FERMI FEL (Trieste, Italy) this goal is committed to the optical device known as AC/DC, which stands for the auto correlator/delay creator. AC/DC is designed to double the incoming FEL pulse splitting the photon beam by inserting a grazing incidence flat mirror, thus preserving the spectral and temporal properties, and further delaying one of these two pulses in time. It can independently tune the FEL pulses fluence on the two optical paths by means of solid-state filters, too. Here, we present a detailed description about this optical device. Strong emphasis is dedicated to the AC/DC opto-mechanical design and to the laser-based feedback systems implemented to compensate for any mismatch affecting the FEL optical trajectory, ascribable to both mechanical imperfections and paraxial errors rising during a temporal delay scan

    Experimental setups for FEL-based four-wave mixing experiments at FERMI

    No full text
    The recent advent of free-electron laser (FEL) sources is driving the scientific community to extend table-top laser research to shorter wavelengths adding elemental selectivity and chemical state specificity. Both a compact setup (mini-TIMER) and a separate instrument (EIS-TIMER) dedicated to four-wave-mixing (FWM) experiments has been designed and constructed, to be operated as a branch of the Elastic and Inelastic Scattering beamline: EIS. The FWM experiments that are planned at EIS-TIMER are based on the transient grating approach, where two crossed FEL pulses create a controlled modulation of the sample excitations while a third time-delayed pulse is used to monitor the dynamics of the excited state. This manuscript describes such experimental facilities, showing the preliminary results of the commissioning of the EIS-TIMER beamline, and discusses original experimental strategies being developed to study the dynamics of matter at the fs-nm time-length scales. In the near future such experimental tools will allow more sophisticated FEL-based FWM applications, that also include the use of multiple and multi-color FEL pulses
    corecore