20,356 research outputs found
Lattice QCD Production on Commodity Clusters at Fermilab
We describe the construction and results to date of Fermilab's three
Myrinet-networked lattice QCD production clusters (an 80-node dual Pentium III
cluster, a 48-node dual Xeon cluster, and a 128-node dual Xeon cluster). We
examine a number of aspects of performance of the MILC lattice QCD code running
on these clusters.Comment: Talk from the 2003 Computing in High Energy and Nuclear Physics
(CHEP03), La Jolla, Ca, USA, March 2003, 6 pages, LaTeX, 8 eps figures. PSN
TUIT00
Leptogenesis in models with keV sterile neutrino dark matter
We analyze leptogenesis in gauge extensions of the Standard Model with keV
sterile neutrino dark matter. We find that both the observed dark matter
abundance and the correct baryon asymmetry of the Universe can simultaneously
emerge in these models. Both the dark matter abundance and the leptogenesis are
controlled by the out of equilibrium decays of the same heavy right handed
neutrino.Comment: 6 pages, 1 figur
Quantum theory of intersubband polarons
We present a microscopic quantum theory of intersubband polarons,
quasiparticles originated from the coupling between intersubband transitions
and longitudinal optical phonons. To this aim we develop a second quantized
theory taking into account both the Fr\"ohlich interaction between phonons and
intersubband transitions and the Coulomb interaction between the intersubband
transitions themselves. Our results show that the coupling between the phonons
and the intersubband transitions is extremely intense, thanks both to the
collective nature of the intersubband excitations and to the natural tight
confinement of optical phonons. Not only the coupling is strong enough to
spectroscopically resolve the resonant splitting between the modes (strong
coupling regime), but it can become comparable to the bare frequency of the
excitations (ultrastrong coupling regime). We thus predict the possibility to
exploit intersubband polarons both for applied optoelectronic research, where a
precise control of the phonon resonances is needed, and also to observe
fundamental quantum vacuum physics, typical of the ultrastrong coupling regime
Theory of continuum percolation II. Mean field theory
I use a previously introduced mapping between the continuum percolation model
and the Potts fluid to derive a mean field theory of continuum percolation
systems. This is done by introducing a new variational principle, the basis of
which has to be taken, for now, as heuristic. The critical exponents obtained
are , and , which are identical with the mean
field exponents of lattice percolation. The critical density in this
approximation is \rho_c = 1/\ve where \ve = \int d \x \, p(\x) \{ \exp [-
v(\x)/kT] - 1 \}. p(\x) is the binding probability of two particles
separated by \x and v(\x) is their interaction potential.Comment: 25 pages, Late
Universal quantum computation with unlabeled qubits
We show that an n-th root of the Walsh-Hadamard transform (obtained from the
Hadamard gate and a cyclic permutation of the qubits), together with two
diagonal matrices, namely a local qubit-flip (for a fixed but arbitrary qubit)
and a non-local phase-flip (for a fixed but arbitrary coefficient), can do
universal quantum computation on n qubits. A quantum computation, making use of
n qubits and based on these operations, is then a word of variable length, but
whose letters are always taken from an alphabet of cardinality three.
Therefore, in contrast with other universal sets, no choice of qubit lines is
needed for the application of the operations described here. A quantum
algorithm based on this set can be interpreted as a discrete diffusion of a
quantum particle on a de Bruijn graph, corrected on-the-fly by auxiliary
modifications of the phases associated to the arcs.Comment: 6 page
Emergence of Consensus in a Multi-Robot Network: from Abstract Models to Empirical Validation
Consensus dynamics in decentralised multiagent systems are subject to intense studies, and several different models have been proposed and analysed. Among these, the naming game stands out for its simplicity and applicability to a wide range of phenomena and applications, from semiotics to engineering. Despite the wide range of studies available, the implementation of theoretical models in real distributed systems is not always straightforward, as the physical platform imposes several constraints that may have a bearing on the consensus dynamics. In this paper, we investigate the effects of an implementation of the naming game for the kilobot robotic platform, in which we consider concurrent execution of games and physical interferences. Consensus dynamics are analysed in the light of the continuously evolving communication network created by the robots, highlighting how the different regimes crucially depend on the robot density and on their ability to spread widely in the experimental arena. We find that physical interferences reduce the benefits resulting from robot mobility in terms of consensus time, but also result in lower cognitive load for individual agents
Charmonium mass splittings at the physical point
We present results from an ongoing study of mass splittings of the lowest
lying states in the charmonium system. We use clover valence charm quarks in
the Fermilab interpretation, an improved staggered (asqtad) action for sea
quarks, and the one-loop, tadpole-improved gauge action for gluons. This study
includes five lattice spacings, 0.15, 0.12, 0.09, 0.06, and 0.045 fm, with two
sets of degenerate up- and down-quark masses for most spacings. We use an
enlarged set of interpolation operators and a variational analysis that permits
study of various low-lying excited states. The masses of the sea quarks and
charm valence quark are adjusted to their physical values. This large set of
gauge configurations allows us to extrapolate results to the continuum physical
point and test the methodology.Comment: 7 pp, 6 figs, Lattice 201
Recommended from our members
Financial crisis and international supervision: New evidence on the discretionary use of loan loss provisions at Euro Area commercial banks
We examine the discretionary use of loan loss provisions during the recent financial crisis, when Euro Area banks experienced not only a negatuve effect on the quality of their loans and a reduction in their profitability, but were also subject to a new form of stricter supervision, namely the EBA 2010 and 2011 stress test exercises. Overall, we find support for the only income smoothing hypothesis and we do not observe any difference in listed banks'behavior when compared to unlisted banks. Banks subject to EBA stress tests had higher incentives to smooth income only for the 2011 EBA exercise when a larger and more detailed set of information was released. This may suggest an unwilled side effect that accounting setters and banking regulators and supervisors should account for
- …