21 research outputs found

    Leptin and Insulin Act on POMC Neurons to Promote the Browning of White Fat

    Get PDF
    SummaryThe primary task of white adipose tissue (WAT) is the storage of lipids. However, ā€œbeigeā€ adipocytes also exist in WAT. Beige adipocytes burn fat and dissipate the energy as heat, but their abundance is diminished in obesity. Stimulating beige adipocyte development, or WAT browning, increases energy expenditure and holds potential for combating metabolic disease and obesity. Here, we report that insulin and leptin act together on hypothalamic neurons to promote WAT browning and weight loss. Deletion of the phosphatases PTP1B and TCPTP enhanced insulin and leptin signaling in proopiomelanocortin neurons and prevented diet-induced obesity by increasing WAT browning and energy expenditure. The coinfusion of insulin plus leptin into the CNS or the activation of proopiomelanocortin neurons also increased WAT browning and decreased adiposity. Our findings identify a homeostatic mechanism for coordinating the status of energy stores, as relayed by insulin and leptin, with the central control of WAT browning

    Leptin mediates the increase in blood pressure associated with obesity.

    Get PDF
    Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species

    Does leptin cause an increase in blood pressure in animals and humans?

    No full text
    Purpose of review Cardiovascular diseases (CVDs) are the number one cause of death globally. The risk for the development of CVDs is significantly increased in obesity. Leptin, the product of white adipose tissue, appears to contribute to the development of CVDs in obesity. Here, we discuss the premise that leptin engages the sympathetic nervous system and contributes to elevated blood pressure (BP) developing in obesity. Recent findings The long-term regulation of BP is dependent on the activity of the autonomic nervous system and specifically the sympathetic nervous system. Sympathetic nerve activity is significantly increased in obese rodents and humans. Leptin increases sympathetic nerve activity in rodents and humans; however, leptin only consistently increases BP chronically in rodents. The ability of leptin to increase BP in rodents is via both hypothalamic and extrahypothalamic regions. In leptin-deficient and leptin receptor-deficient humans, leptin appears to be the key reason for decreased systolic BP. However, in other research conducted in humans, chronic administration of leptin does not elevate BP

    Leptin action in the dorsomedial hypothalamus increases sympathetic tone to brown adipose tissue in spite of systemic leptin resistance

    No full text
    Leptin regulates body weight in mice by decreasing appetite and increasing sympathetic nerve activity (SNA), which increases energy expenditure in interscapular brown adipose tissue (iBAT). Diet-induced obese mice (DIO) are resistant to the anorectic actions of leptin. We evaluated whether leptin still stimulated sympathetic outflow in DIO mice. We measured iBAT temperature as a marker of SNA. We found that obese hyperleptinemic mice have higher iBAT temperature than mice on regular diet. Conversely, obese leptin-deficient ob/ob mice have lower iBAT temperature. Additionally, leptin increased SNA in obese (DIO and ob/ob) and control mice, despite DIO mice being resistant to anorectic action of leptin. We demonstrated that neurons in the dorsomedial hypothalamus (DMH) of DIO mice mediate the thermogenic responses to hyperleptinemia in obese mammals because blockade of leptin receptors in the DMH prevented the thermogenic effects of leptin. Peripheral Melotan II (MTII) injection increased iBAT temperature, but it was blunted by blockade of DMH melanocortin receptors (MC4Rs) by injecting agouti-related peptide (AgRP) directly into the DMH, suggesting a physiological role of the DMH on temperature regulation in animals with normal body weight. Nevertheless, obese mice without a functional melanocortin system (MC4R KO mice) have an increased sympathetic outflow to iBAT compared with their littermates, suggesting that higher leptin levels drive sympathoexcitation to iBAT by a melanocortin-independent pathway. Because the sympathetic nervous system contributes in regulating blood pressure, heart rate, and hepatic glucose production, selective leptin resistance may be a crucial mechanism linking adiposity and metabolic syndrome

    Food hypersensitivity-induced chronic gastrointestinal inflammation in a non-human primate model of diet-induced obesity.

    No full text
    Experimental non-human primate models of obesity are induced through the introduction of atypically calorically rich diets. Studies in captive-bred macaques show the development of obesity and diabetes with similar complications to humans including eye and kidney diseases, nerve damage associated with pain and blood vessel damage. Diets differ in outcomes and here we document inflammation of the gastrointestinal tract that can be exacerbated through these dietary interventions. Following baseline physiological evaluation of body composition, Southern pigtail macaques were given a high-fat diet (HFD) for three months. This HFD consisted of lard, grains (including gluten), dairy and fructose that was otherwise omitted from a standard macaque diet (Chow). Physiological parameters were then reassessed before animals were reverted back to standard Chow for a further three months (remission). Consumption of the HFD resulted in food-mediated hypersensitivity marked by chronic weight loss, alopecia, malabsorption, protein-losing enteropathy and gross diffuse intestinal villi atrophy and lamina propria hypertrophy. Physiological changes were more highly pronounced in female macaques suggesting sex-specific differences but could be fully reversed through change of diet. Care should be taken in choosing non-human primate HFD diets for creating experimental models of obesity because they can induce severe food-driven chronic inflammation of the gastrointestinal tract that can eventuate to diet-induced chronic wasting and mortality

    A Hypothalamic Phosphatase Switch Coordinates Energy Expenditure with Feeding

    No full text
    Beige adipocytes can interconvert between white and brown-like states and switch between energy storage versus expenditure. Here we report that beige adipocyte plasticity is important for feeding-associated changes in energy expenditure and is coordinated by the hypothalamus and the phosphatase TCPTP. A fasting-induced and glucocorticoid-mediated induction of TCPTP, inhibited insulin signaling in AgRP/NPY neurons, repressed the browning of white fat and decreased energy expenditure. Conversely feeding reduced hypothalamic TCPTP, to increase AgRP/NPY neuronal insulin signaling, white adipose tissue browning and energy expenditure. The feeding-induced repression of hypothalamic TCPTP was defective in obesity. Mice lacking TCPTP in AgRP/NPY neurons were resistant to diet-induced obesity and had increased beige fat activity and energy expenditure. The deletion of hypothalamic TCPTP in obesity restored feeding-induced browning and increased energy expenditure to promote weight loss. Our studies define a hypothalamic switch that coordinates energy expenditure with feeding for the maintenance of energy balance
    corecore