8 research outputs found

    Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity

    Get PDF
    Ferumoxytol is a nanoparticle formulation approved by the U.S. Food and Drug Administration for systemic use to treat iron deficiency. Here, we show that, in addition, ferumoxytol disrupts intractable oral biofilms and prevents tooth decay (dental caries) via intrinsic peroxidase-like activity. Ferumoxytol binds within the biofilm ultrastructure and generates free radicals from hydrogen peroxide (H2O2), causing in situ bacterial death via cell membrane disruption and extracellular polymeric substances matrix degradation. In combination with low concentrations of H2O2, ferumoxytol inhibits biofilm accumulation on natural teeth in a human-derived ex vivo biofilm model, and prevents acid damage of the mineralized tissue. Topical oral treatment with ferumoxytol and H2O2 suppresses the development of dental caries in vivo, preventing the onset of severe tooth decay (cavities) in a rodent model of the disease. Microbiome and histological analyses show no adverse effects on oral microbiota diversity, and gingival and mucosal tissues. Our results reveal a new biomedical application for ferumoxytol as topical treatment of a prevalent and costly biofilm-induced oral disease

    Hyposalivation but not Sjögren’s syndrome associated with microbial dysbiosis in women

    Get PDF
    BackgroundSaliva modulates the environment of the oral biofilm through pH buffer, microbial attachment to host surfaces, and nutritional source. The ecology of stress occurs when a physical factor adversely impacts an ecosystem or its biotic components. Therefore, reduced salivary flow can affect oral-host balance. The leading causes of hyposalivation include disease-associated Sjögren’s syndrome (SS) and menopausal women as aging-associated. However, little is known about the oral microbiome integrated with sex hormones in hyposalivation. This study aimed to characterize the hyposalivation microbiome caused by aging or disease affecting the salivary glands in women.MethodsWe included 50 women older than 40 years of age in any menopausal phase. We collected stimulated saliva from 25 women diagnosed with SS (SS) and 25 without SS (non-SS). The bacterial profile of the patients was obtained by 16S rRNA sequencing. Bioinformatics analysis used machine learning to analyze the cohort’s signs, symptoms, and bacterial profile. Salivary estradiol as a sex hormone variation level was determined.ResultsWe obtained that 79% of the SS group, and 52% of the non-SS group had hyposalivation. We found a negatively correlated Prevotella-age and Rothia-estradiol in the SS group. Highlight, we found that the cause of the hyposalivation in the study did not explain differences in microbial diversity comparing non-SS and SS groups. Therefore, microbial communities found in hyposalivation but not related to systemic conditions suggest that changes in the oral environment might underpin host-microbial balance.ConclusionThe salivary microbiome was similar in women with and without SS. However, hyposalivation showed two distinctive clusters associated with the bacterial population profiles. Our study suggests that local ecological disturbances could drive the change in the microbiome

    Interkingdom assemblages in human saliva display group-level surface mobility and disease-promoting emergent functions

    Get PDF
    Fungi and bacteria often engage in complex interactions, such as the formation of multicellular biofilms within the human body. Knowledge about how interkingdom biofilms initiate and coalesce into higher-level communities and which functions the different species carry out during biofilm formation remain limited. We found native-state assemblages of; Candida albicans; (fungi) and; Streptococcus mutans; (bacteria) with highly structured arrangement in saliva from diseased patients with childhood tooth decay. Further analyses revealed that bacterial clusters are attached within a network of fungal yeasts, hyphae, and exopolysaccharides, which bind to surfaces as a preassembled cell group. The interkingdom assemblages exhibit emergent functions, including enhanced surface colonization and growth rate, stronger tolerance to antimicrobials, and improved shear resistance, compared to either species alone. Notably, we discovered that the interkingdom assemblages display a unique form of migratory spatial mobility that enables fast spreading of biofilms across surfaces and causes enhanced, more extensive tooth decay. Using mutants, selective inactivation of species, and selective matrix removal, we demonstrate that the enhanced stress resistance and surface mobility arise from the exopolymeric matrix and require the presence of both species in the assemblage. The mobility is directed by fungal filamentation as hyphae extend and contact the surface, lifting the assemblage with a "forward-leaping motion." Bacterial cell clusters can "hitchhike" on this mobile unit while continuously growing, to spread across the surface three-dimensionally and merge with other assemblages, promoting community expansion. Together, our results reveal an interkingdom assemblage in human saliva that behaves like a supraorganism, with disease-causing emergent functionalities that cannot be achieved without coassembly

    Polymicrobial Aggregates in Human Saliva Build the Oral Biofilm

    No full text
    Biofilm community development has been established as a sequential process starting from the attachment of single cells on a surface. However, microorganisms are often found as aggregates in the environment and in biological fluids. Here, we conduct a comprehensive analysis of the native structure and composition of aggregated microbial assemblages in human saliva and investigate their spatiotemporal attachment and biofilm community development. Using multiscale imaging, cell sorting, and computational approaches combined with sequencing analysis, a diverse mixture of aggregates varying in size, structure, and microbial composition, including bacteria associated with host epithelial cells, can be found in saliva in addition to a few single-cell forms. Phylogenetic analysis reveals a mixture of complex consortia of aerobes and anaerobes in which bacteria traditionally considered early and late colonizers are found mixed together. When individually tracked during colonization and biofilm initiation, aggregates rapidly proliferate and expand tridimensionally, modulating population growth, spatial organization, and community scaffolding. In contrast, most single cells remain static or are incorporated by actively growing aggregates. These results suggest an alternative biofilm development process whereby aggregates containing different species or associated with human cells collectively adhere to the surface as "growth nuclei" to build the biofilm and shape polymicrobial communities at various spatial and taxonomic scales. IMPORTANCE Microbes in biological fluids can be found as aggregates. How these multicellular structures bind to surfaces and initiate the biofilm life cycle remains understudied. Here, we investigate the structural organization of microbial aggregates in human saliva and their role in biofilm formation. We found diverse mixtures of aggregates with different sizes, structures, and compositions in addition to free-living cells. When individually tracked during binding and growth on tooth-like surfaces, most aggregates developed into structured biofilm communities, whereas most single cells remained static or were engulfed by the growing aggregates. Our results reveal that preformed microbial consortia adhere as "buds of growth," governing biofilm initiation without specific taxonomic order or cell-by-cell succession, which provide new insights into spatial and population heterogeneity development in complex ecosystems

    Polymicrobial Aggregates in Human Saliva Build the Oral Biofilm

    No full text
    Biofilm community development has been established as a sequential process starting from the attachment of single cells on a surface. However, microorganisms are often found as aggregates in the environment and in biological fluids. Here, we conduct a comprehensive analysis of the native structure and composition of aggregated microbial assemblages in human saliva and investigate their spatiotemporal attachment and biofilm community development. Using multiscale imaging, cell sorting, and computational approaches combined with sequencing analysis, a diverse mixture of aggregates varying in size, structure, and microbial composition, including bacteria associated with host epithelial cells, can be found in saliva in addition to a few single-cell forms. Phylogenetic analysis reveals a mixture of complex consortia of aerobes and anaerobes in which bacteria traditionally considered early and late colonizers are found mixed together. When individually tracked during colonization and biofilm initiation, aggregates rapidly proliferate and expand tridimensionally, modulating population growth, spatial organization, and community scaffolding. In contrast, most single cells remain static or are incorporated by actively growing aggregates. These results suggest an alternative biofilm development process whereby aggregates containing different species or associated with human cells collectively adhere to the surface as “growth nuclei” to build the biofilm and shape polymicrobial communities at various spatial and taxonomic scales

    Evaluation of possible biomarkers for caries risk in children 6 to 12 years of age

    No full text
    Background: Electrolytes, proteins, and other salivary molecules play an important role in tooth integrity and can serve as biomarkers associated with caries. Objective: To determine the concentration of potential biomarkers in children without caries (CF) and children with caries (CA). Methods: Unstimulated saliva was collected, and the biomarkers quantified in duplicate, using commercial Enzyme Linked Immunosorbent Assay (ELISA) kits to determine IgA, fibronectin, cathelicidin LL-37, and statherin levels, as well as colorimetric tests to detect formate and phosphate. Results: Significantly higher concentrations of statherin was detected in the CF group (Median: 94,734.6; IQR: 92,934.6–95,113.7) compared to the CA2 group (90,875.0; IQR: 83,580.2–94,633.4) (p = 0.03). Slightly higher median IgA (48,250.0; IQR: 31,461.9–67,418.8) and LL-37 levels (56.1; IQR 43.6–116.2) and a lower concentration of formate were detected in the CF group (0.02; IQR 0.0034–0.15) compared to the group with caries (IgA: 37,776.42; IQR: 33,383.9–44,128.5; LL-37: 46.3; IQR: 40.1011–67.7; formate: 0.10; IQR: 0.01–0.18), but these differences were not statistically significant. Conclusion: The fact that these compounds have been identified as good markers for caries among European adults highlights the difficulty of identifying universal biomarkers that are applicable to all ages or to different populations.https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001561382GIOMET0000-0002-5435-345

    Iron oxide nanozymes stabilize stannous fluoride for targeted biofilm killing and synergistic oral disease prevention

    No full text
    Abstract Dental caries is the most common human disease caused by oral biofilms despite the widespread use of fluoride as the primary anticaries agent. Recently, an FDA-approved iron oxide nanoparticle (ferumoxytol, Fer) has shown to kill and degrade caries-causing biofilms through catalytic activation of hydrogen peroxide. However, Fer cannot interfere with enamel acid demineralization. Here, we show notable synergy when Fer is combined with stannous fluoride (SnF2), markedly inhibiting both biofilm accumulation and enamel damage more effectively than either alone. Unexpectedly, we discover that the stability of SnF2 is enhanced when mixed with Fer in aqueous solutions while increasing catalytic activity of Fer without any additives. Notably, Fer in combination with SnF2 is exceptionally effective in controlling dental caries in vivo, even at four times lower concentrations, without adverse effects on host tissues or oral microbiome. Our results reveal a potent therapeutic synergism using approved agents while providing facile SnF2 stabilization, to prevent a widespread oral disease with reduced fluoride exposure

    Molecular analysis of the endobronchial stent microbial biofilm reveals bacterial communities that associate with stent material and frequent fungal constituents.

    No full text
    Endobronchial stents are increasingly used to treat airway complications in multiple conditions including lung transplantation but little is known about the biofilms that form on these devices. We applied deep sequencing to profile luminal biofilms of 46 endobronchial stents removed from 20 subjects primarily with lung transplantation-associated airway compromise. Microbial communities were analyzed by bacterial 16S rRNA and fungal ITS marker gene sequencing. Corynebacterium was the most common bacterial taxa across biofilm communities. Clustering analysis revealed three bacterial biofilm types: one low diversity and dominated by Corynebacterium; another was polymicrobial and characterized by Staphylococcus; and the third was polymicrobial and associated with Pseudomonas, Streptococcus, and Prevotella. Biofilm type was significantly correlated with stent material: covered metal with the Staphylococcus-type biofilm, silicone with the Corynebacterium-dominated biofilm, and uncovered metal with the polymicrobial biofilm. Subjects with sequential stents had frequent transitions between community types. Fungal analysis found Candida was most prevalent, Aspergillus was common and highly enriched in two of three stents associated with airway anastomotic dehiscence, and fungal taxa not typically considered pathogens were highly enriched in some stents. Thus, molecular analysis revealed a complex and dynamic endobronchial stent biofilm with three bacterial types that associate with stent material, a central role for Corynebacterium, and that both expected and unexpected fungi inhabit this unique niche. The current work provides a foundation for studies to investigate the relationship between stent biofilm composition and clinical outcomes, mechanisms of biofilm establishment, and strategies for improved stent technology and use in airway compromise
    corecore