5,251 research outputs found

    Catastrophic chromosomal restructuring during genome elimination in plants.

    Get PDF
    Genome instability is associated with mitotic errors and cancer. This phenomenon can lead to deleterious rearrangements, but also genetic novelty, and many questions regarding its genesis, fate and evolutionary role remain unanswered. Here, we describe extreme chromosomal restructuring during genome elimination, a process resulting from hybridization of Arabidopsis plants expressing different centromere histones H3. Shattered chromosomes are formed from the genome of the haploid inducer, consistent with genomic catastrophes affecting a single, laggard chromosome compartmentalized within a micronucleus. Analysis of breakpoint junctions implicates breaks followed by repair through non-homologous end joining (NHEJ) or stalled fork repair. Furthermore, mutation of required NHEJ factor DNA Ligase 4 results in enhanced haploid recovery. Lastly, heritability and stability of a rearranged chromosome suggest a potential for enduring genomic novelty. These findings provide a tractable, natural system towards investigating the causes and mechanisms of complex genomic rearrangements similar to those associated with several human disorders

    Suprathreshold heat pain response predicts activity-related pain, but not rest-related pain, in an exercise-induced injury model

    Get PDF
    © 2014 Coronado et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Exercise-induced injury models are advantageous for studying pain since the onset of pain is controlled and both pre-injury and post-injury factors can be utilized as explanatory variables or predictors. In these studies, rest-related pain is often considered the primary dependent variable or outcome, as opposed to a measure of activity-related pain. Additionally, few studies include pain sensitivity measures as predictors. In this study, we examined the influence of pre-injury and post-injury factors, including pain sensitivity, for induced rest and activity-related pain following exercise induced muscle injury. The overall goal of this investigation was to determine if there were convergent or divergent predictors of rest and activityrelated pain. One hundred forty-three participants provided demographic, psychological, and pain sensitivity information and underwent a standard fatigue trial of resistance exercise to induce injury of the dominant shoulder. Pain at rest and during active and resisted shoulder motion were measured at 48- and 96-hours post-injury. Separate hierarchical models were generated for assessing the influence of pre-injury and post-injury factors on 48- and 96-hour rest-related and activityrelated pain. Overall, we did not find a universal predictor of pain across all models. However, pre-injury and post-injury suprathreshold heat pain response (SHPR), a pain sensitivity measure, was a consistent predictor of activity-related pain, even after controlling for known psychological factors. These results suggest there is differential prediction of pain. A measure of pain sensitivity such as SHPR appears more influential for activity-related pain, but not rest-related pain, and may reflect different underlying processes involved during pain appraisal

    Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework

    Get PDF
    BACKGROUND The results of studies on observational associations may vary depending on the study design and analysis choices as well as due to measurement error. It is important to understand the relative contribution of different factors towards generating variable results, including low sample sizes, researchers' flexibility in model choices, and measurement error in variables of interest and adjustment variables. METHODS We define sampling, model and measurement uncertainty, and extend the concept of vibration of effects in order to study these three types of uncertainty in a common framework. In a practical application, we examine these types of uncertainty in a Cox model using data from the National Health and Nutrition Examination Survey. In addition, we analyse the behaviour of sampling, model and measurement uncertainty for varying sample sizes in a simulation study. RESULTS All types of uncertainty are associated with a potentially large variability in effect estimates. Measurement error in the variable of interest attenuates the true effect in most cases, but can occasionally lead to overestimation. When we consider measurement error in both the variable of interest and adjustment variables, the vibration of effects are even less predictable as both systematic under- and over-estimation of the true effect can be observed. The results on simulated data show that measurement and model vibration remain non-negligible even for large sample sizes. CONCLUSION Sampling, model and measurement uncertainty can have important consequences for the stability of observational associations. We recommend systematically studying and reporting these types of uncertainty, and comparing them in a common framework

    Satisfactory safety and immunogenicity of MSP3 malaria vaccine candidate in Tanzanian children aged 12-24 months.

    Get PDF
    BACKGROUND: Development and deployment of an effective malaria vaccine would complement existing malaria control measures. A blood stage malaria vaccine candidate, Merozoite Surface Protein-3 (MSP3), produced as a long synthetic peptide, has been shown to be safe in non-immune and semi-immune adults. A phase Ib dose-escalating study was conducted to assess the vaccine's safety and immunogenicity in children aged 12 to 24 months in Korogwe, Tanzania (ClinicalTrials.gov number: NCT00469651). METHODS: This was a double-blind, randomized, controlled, dose escalation phase Ib trial, in which children were given one of two different doses of the MSP3 antigen (15 microg or 30 microg) or a control vaccine (Engerix B). Children were randomly allocated either to the MSP3 candidate malaria vaccine or the control vaccine administered at a schedule of 0, 1, and 2 months. Immunization with lower and higher doses was staggered for safety reasons starting with the lower dose. The primary endpoint was safety and reactogenicity within 28 days post-vaccination. Blood samples were obtained at different time points to measure immunological responses. Results are presented up to 84 days post-vaccination. RESULTS: A total of 45 children were enrolled, 15 in each of the two MSP3 dose groups and 15 in the Engerix B group. There were no important differences in reactogenicity between the two MSP3 groups and Engerix B. Grade 3 adverse events were infrequent; only five were detected throughout the study, all of which were transient and resolved without sequelae. No serious adverse event reported was considered to be related to MSP3 vaccine. Both MSP3 dose regimens elicited strong cytophilic IgG responses (subclasses IgG1 and IgG3), the isotypes involved in the monocyte-dependant mechanism of Plasmodium falciparum parasite-killing. The titers reached are similar to those from African adults having reached a state of premunition. Furthermore, vaccination induced seroconversion in all vaccinees. CONCLUSION: The MSP3 malaria vaccine candidate was safe, well tolerated and immunogenic in children aged 12-24 months living in a malaria endemic community. Given the vaccine's safety and its induction of cytophilic IgG responses, its efficacy against P. falciparum infection and disease needs to be evaluated in Phase 2 studies

    Statistical challenges in the development and evaluation of marker-based clinical tests

    Get PDF
    Exciting new technologies for assessing markers in human specimens are now available to evaluate unprecedented types and numbers of variations in DNA, RNA, proteins, or biological structures such as chromosomes. These markers, whether viewed individually, or collectively as a 'signature', have the potential to be useful for disease risk assessment, screening, early detection, prognosis, therapy selection, and monitoring for therapy effectiveness or disease recurrence. Successful translation from basic research findings to clinically useful test requires basic, translational, and regulatory sciences and a collaborative effort among individuals with varied types of expertise including laboratory scientists, technology developers, clinicians, statisticians, and bioinformaticians. The focus of this commentary is the many statistical challenges in translational marker research, specifically in the development and validation of marker-based tests that have clinical utility for therapeutic decision-making

    Evidence of Spatially Extensive Resistance to PCBs in an Anadromous Fish of the Hudson River

    Get PDF
    Populations of organisms that are chronically exposed to high levels of chemical contaminants may not suffer the same sublethal or lethal effects as naive populations, a phenomenon called resistance. Atlantic tomcod (Microgadus tomcod) from the Hudson River, New York, are exposed to high concentrations of polycyclic aromatic hydrocarbons (PAHs) and bioaccumulate polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs). They have developed resistance to PCBs and PCDDs but not to PAHs. Resistance is largely heritable and manifests at early-life-stage toxic end points and in inducibility of cytochrome P4501A (CYP1A) mRNA expression. Because CYP1A induction is activated by the aryl hydrocarbon receptor (AHR) pathway, as are most toxic responses to these compounds, we sought to determine the geographic extent of resistance to CYP1A mRNA induction by PCBs in the Hudson River tomcod population. Samples of young-of-the-year tomcod were collected from seven locales in the Hudson River, extending from the Battery at river mile 1 (RM 1) to RM 90, and from the Miramichi River, New Brunswick, Canada. Laboratory-reared offspring of tomcod adults from Newark Bay, in the western portion of the Hudson River estuary, were also used in this study. Fish were partially depurated in clean water and intraperitoneally injected with 10 ppm coplanar PCB-77, 10 ppm benzo[a]pyrene (BaP), or corn oil vehicle, and levels of CYP1A mRNA were determined. CYP1A was significantly inducible by treatment with BaP in tomcod from the Miramichi River, from laboratory-spawned offspring of Newark Bay origin, and from all Hudson River sites spanning 90 miles of river. In contrast, only tomcod from the Miramichi River displayed significantly induced CYP1A mRNA expression when treated with PCB-77. Our results suggest that the population of tomcod from throughout the Hudson River estuary has developed resistance to CYP1A inducibility and probably other toxicities mediated by the AHR pathway. Tomcod from the Hudson River may represent the most geographically expansive population of vertebrates with resistance to chemical pollutants that has been characterized

    Behavioral implications of shortlisting procedures

    Get PDF
    We consider two-stage “shortlisting procedures” in which the menu of alternatives is first pruned by some process or criterion and then a binary relation is maximized. Given a particular first-stage process, our main result supplies a necessary and sufficient condition for choice data to be consistent with a procedure in the designated class. This result applies to any class of procedures with a certain lattice structure, including the cases of “consideration filters,” “satisficing with salience effects,” and “rational shortlist methods.” The theory avoids background assumptions made for mathematical convenience; in this and other respects following Richter’s classical analysis of preference-maximizing choice in the absence of shortlisting

    Studying the effects of thalamic interneurons in a thalamocortical neural mass model

    Get PDF
    Neural mass models of the thalamocortical circuitry are often used to mimic brain activity during sleep and wakefulness as observed in scalp electroencephalogram (EEG) signals [1]. It is understood that alpha rhythms (8-13 Hz) dominate the EEG power-spectra in the resting-state [2] as well as the period immediately before sleep [3]. Literature review shows that the thalamic interneurons (IN) are often ignored in thalamocortical population models; the emphasis is on the connections between the thalamo cortical relay (TCR) and the thalamic reticular nucleus (TRN). In this work, we look into the effects of the IN cell population on the behaviour of an existing thalamocortical model containing the TCR and TRN cell populations [4]. A schematic of the extended model used in this work is shown in Fig.1. The model equations are solved in Matlab using the Runge-Kutta method of the 4th/5th order. The model shows high sensitivity to the forward and reverse rates of reactions during synaptic transmission as well as on the membrane conductance of the cell populations. The input to the model is a white noise signal simulating conditions of resting state with eyes closed, a condition well known to be associated with dominant alpha band oscillations in EEG e.g. [5]. Thus, the model parameters are calibrated to obtain a set of basal parameter values when the model oscillates with a dominant frequency within the alpha band. The time series plots and the power spectra of the model output are compared with those when the IN cell population is disconnected from the circuit (by setting the inhibitory connectivity parameter from the IN to the TCR to zero). We observe (Fig. 2 inset) a significant difference in time series output of the TRN cell population with and without the IN cell population in the model; this in spite of the IN having no direct connectivity to and from the TRN cell population (Fig. 1). A comparison of the power spectra behaviour of the model output within the delta (1-3.5Hz), theta (3.75-7.5Hz), alpha (7.75-13.5Hz) and beta (13.75-30.5Hz) bands is shown in Fig. 2. Disconnecting the IN cell population shows a significant drop in the alpha band power and the dominant frequency of oscillation now lies within the theta band. An overall ‘slowing’ (left-side shift) of the power spectra is observed with an increase within the delta and theta bands and a decrease in the alpha and beta bands. Such a slowing of EEG is a signature of slow wave sleep in healthy individuals, and this suggests that the IN cell population may be centrally involved in the phase transition to slow wave sleep [6]. It is also characteristic of the waking EEG in Alzheimer’s disease, and may help us to understand the role of the IN cell population in modulating TCR and TRN cell behaviour in pathological brain conditions

    On the selection of the classical limit for potentials with BV derivatives

    Full text link
    We consider the classical limit of the quantum evolution, with some rough potential, of wave packets concentrated near singular trajectories of the underlying dynamics. We prove that under appropriate conditions, even in the case of BV vector fields, the correct classical limit can be selected
    corecore