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Abstract

Exercise-induced injury models are advantageous for studying pain since the onset of pain is controlled and both pre-injury
and post-injury factors can be utilized as explanatory variables or predictors. In these studies, rest-related pain is often
considered the primary dependent variable or outcome, as opposed to a measure of activity-related pain. Additionally, few
studies include pain sensitivity measures as predictors. In this study, we examined the influence of pre-injury and post-injury
factors, including pain sensitivity, for induced rest and activity-related pain following exercise induced muscle injury. The
overall goal of this investigation was to determine if there were convergent or divergent predictors of rest and activity-
related pain. One hundred forty-three participants provided demographic, psychological, and pain sensitivity information
and underwent a standard fatigue trial of resistance exercise to induce injury of the dominant shoulder. Pain at rest and
during active and resisted shoulder motion were measured at 48- and 96-hours post-injury. Separate hierarchical models
were generated for assessing the influence of pre-injury and post-injury factors on 48- and 96-hour rest-related and activity-
related pain. Overall, we did not find a universal predictor of pain across all models. However, pre-injury and post-injury
suprathreshold heat pain response (SHPR), a pain sensitivity measure, was a consistent predictor of activity-related pain,
even after controlling for known psychological factors. These results suggest there is differential prediction of pain. A
measure of pain sensitivity such as SHPR appears more influential for activity-related pain, but not rest-related pain, and
may reflect different underlying processes involved during pain appraisal.
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Introduction

Pain ratings are commonly queried during the assessment of

individuals with musculoskeletal pain. In clinical studies, current

or rest-related pain intensity is most often assessed [1], while pain

ratings with specific activity (e.g., activity-related pain) are less

frequently reported. A recent systematic review of post-surgical

trials by Srikandarajah and Gilron [2] found that only 39% (281/

726) of published trials included a measurement of activity-related

pain as a clinical outcome. Failure to include a measure of activity-

related pain is noteworthy as activity-related pain may have a

stronger association with functional limitations, or greater

sensitivity in assessing therapeutic response, than measures of

rest-related pain [3,4].

Differentiating rest and activity-related pain can be difficult in

clinical studies. Exercise-induced injury models may better control

comparisons of rest and activity-related pain. In a study by

Dannecker and Sluka [5], the authors showed that following

eccentric exercise for the elbow flexors, higher pain ratings

occurred with elbow extension than at rest. This study is relevant

as it suggests exercise-induced injury models can induce higher

levels of pain dependent on activity, and may be appropriate

models for studying the prediction of rest and activity-related pain.

Predictive models have been generated to determine which

factors influence pain outcomes following exercise-induced injury

[6–9]. Similar to clinical studies, most exercise-induced injury

studies focus on predicting rest-related pain rather than activity-

related pain. Factors shown to be predictive of rest-related pain are

predominantly psychological in nature, such as pain catastrophiz-

ing [9,10]. However, current limitations in the prediction of pain

following exercise-induced injury are twofold. First, it is unclear

whether psychological factors are predictors of activity-related
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pain. Second, measures of pain sensitivity have not been widely

considered within predictive models for pain following exercise-

induced injury [6,7]. Pain sensitivity measures are thought to

reflect pain processing within the nervous system and are receiving

attention as potential prognostic variables [11,12]. Pain sensitivity

can potentially improve prediction models that already include

psychological factors and, therefore, may allow better evaluation

of different processes relevant to the perception of rest or activity-

related pain. Furthermore, pain sensitivity, if found to be an

important predictor, could be considered a relevant factor to

include in clinical assessment, especially as it is not commonly

assessed in a clinical context [13].

Thus, further investigation is needed to ascertain the influence

pain sensitivity has on an individual’s pain perception at rest or

during activity. Specifically, we sought primarily to assess the

predictive ability of 1) baseline, pre-injury pain sensitivity on post-

injury rest and activity-related pain at 48 and 96-hours and 2) 48-

hours post-injury pain sensitivity on post-injury rest and activity-

related pain at 96-hours. We used an exercise-induced injury

model in a group of healthy volunteers, as these models are

standardized induced-pain methods to study the development and

progression of chronic pain. In these models, the overall pain

experience is shorter in duration, yet generates similar pain and

impairment characteristics observed in clinical pain conditions

[14–16]. Moreover, the influence of both pre-injury (e.g., pre-

clinical) and post-injury (e.g., clinical) factors on the painful

episode can be examined as the onset of injury is controlled within

the model. We hypothesized that pain sensitivity factors would be

predictive of rest and activity-related pain, even after controlling

for psychological factors. We did not have a specific hypothesis on

a differential influence of pain sensitivity on pain outcome.

Materials and Methods

Ethics Statement
This study was approved by the University of Florida

Institutional Review Board. Prior to enrollment, all participants

provided written informed consent.

Participants
Participants were recruited from the campus of the University of

Florida and the surrounding community. All participants were

between the ages of 18 and 85 years old and not performing

strength training exercises for the upper extremity either currently

or during the previous 6 weeks. Participants were not included if

they 1) were currently experiencing neck or shoulder pain, 2) had

neurological impairments of the upper extremity, such as loss of

sensation, muscle weakness, or reflex changes, 3) were currently

taking pain medication, or 4) had previous shoulder surgery.

Procedure
After providing written informed consent at the initial

assessment session, all participants completed standardized ques-

tionnaires and underwent pain sensitivity testing. Testing was

conducted in the same private laboratory environment controlled

for room temperature and humidity, and where distractions were

minimized. Next, participants performed an eccentric exercise

protocol on their dominant shoulder to induce pain [8] using a

Kin-Com isokinetic dynamometer (Chattanooga Group, Chatta-

nooga, TN). Participants were seated according to manufacturer’s

recommendations and straps were affixed across the torso to

minimize trunk motion. The dominant shoulder was placed in a

standardized position within the scapular plane. After determining

maximum voluntary isometric contraction (MVIC) for each

individual, participants completed repetitions of isokinetic con-

centric/eccentric external rotation actions to induce shoulder

pain. Specifically, participants performed a standard bout of 3 sets

of 10 repetitions at 60u/sec with a goal of fatiguing participants so

they generated 50% or less of their initial MVIC. If necessary,

additional repetitions (e.g., 1 set of 8 repetitions) were performed

until the standard fatigue level was reached. After completing the

initial session which lasted approximately one hour, participants

were then scheduled for 2 follow-up sessions. Follow-up sessions

occurred at 48- and 96-hours after the initial session, where repeat

measurements of psychological variables, pain sensitivity, and

outcome occurred at 48-hours and outcome alone at 96-hours.

Measures
Demographics. Demographic information included age, sex,

height, weight, and dominant arm. Height and weight information

were used to compute body mass index (BMI) as a covariate for

exercise-induced injury.

Shoulder Pain Intensity. Using a 101-point numeric pain

rating scale (0 = ‘‘no pain,’’ 100 = ‘‘worst pain imaginable’’),

participants verbally indicated their intensity of shoulder pain

[17]. Shoulder pain intensity was asked during three states: 1) at

rest (e.g., upper extremity held at side); 2) during active motion

(e.g., shoulder abduction); 3) during isometric activation (e.g.,

resisted external rotation).

Pain Catastrophizing. Pain catastrophizing was assessed

using the Pain Catastrophizing Scale (PCS) as this variable has

been shown to influence pain-related outcomes [9,18,19]. The

PCS is a 13-item questionnaire (score ranges from 0 to 52) that

measures thoughts on various pain experiences where higher

scores reflect higher levels of pain catastrophizing [20].

Fear of Movement. Fear of movement was assessed using the

shortened version of the Tampa Scale of Kinesiophobia (TSK-11)

and has shown to be associated with shoulder injury outcome

[21,22]. The TSK-11 is a 17-item questionnaire (score ranges

from 11 to 44) that measures fear of movement where higher

scores reflect higher levels of fear of movement [23].

Pressure Pain Threshold. Pressure pain threshold (PPT)

was measured at the tip of the acromion of the dominant shoulder

using a hand-held algometer (Pain Diagnostics & Treatment,

Great Neck, NY) with a 1 cm2 diameter probe. PPT is a single

stimulus threshold measure of static pain sensitivity, and is

commonly used in laboratory and clinical research trials [24].

Our assessment of PPT for the shoulder undergoing exercise-

induced injury is a marker of local pain sensitivity. [25,26] A

trained examiner applied a standard pressure force with a target

rate of approximately 1 kg/sec until the pressure sensation was

first reported by the participant to be painful [25–28]. Lower PPT

values were indicative of higher pain sensitivity. A total of 3 trials

were obtained with rest in between each testing trial. The average

of the 3 trials was used for analyses.

Suprathreshold Heat Pain Response. Suprathreshold heat

pain response (SHPR) was measured at the thenar aspect of both

hands using a contact thermode with 2.5 cm2 surface area

connected to a computer-controlled PATHWAY Model Contact

Heat Evoked Potential Stimulator (CHEPS) (Medoc Advanced

Medical Systems). SHPR is a dynamic measure of pain sensitivity

and thought to be predominantly mediated by C-fiber activity

[24,29]. A series of 5 consecutive heat pulses at a rate of 30uC/sec

with interstimulus interval of 2.5 seconds was delivered with a

peak temperature of 48uC. We used 48uC as this temperature

elicits a moderate level of pain (e.g., pain ratings near 50/100 on

pain rating scale) for a majority of participants [30]. Each heat

pulse was rated by the participant using the same 101-point
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numeric pain rating scale. SHPR was identified as the pain

intensity rating of the fifth heat pulse in a train of 5 heat pulses and

has been used as a clinically meaningful dynamic measure of pain

sensitivity [30,31]. Higher pain ratings on SHPR indicate higher

pain sensitivity. The average SHPR rating of both hands was used

for analyses.

Conditioned Pain Modulation. Conditioned pain modula-

tion (CPM) was measured using the same CHEPS setup as SHPR.

The CPM protocol included a measured response of a test

stimulus before and after application of a conditioning stimulus

[32]. The test stimulus was delivered to the thenar aspect of the

non-dominant hand and involved a sequence of 5 heat pulses at a

temperature that induced a moderate level of pain intensity (e.g.,

50/100 on pain scale) with the same parameters as SHPR.

Participants rated each heat pulse with the same 101-point

numeric pain rating scale used in the SHPR protocol. The pain

rating of the fifth heat pulse was used as the test stimulus response.

For the conditioning stimulus, participants immersed their

dominant hand into a cold water bath for up to 60 seconds.

The water temperature was maintained at a constant temperature

of 8uC using a refrigeration unit (NESLAB RTE 7 Digital One,

Thermo Scientific Co., Massachusetts, USA) which circulated

water to prevent warming. Participants were instructed to keep

their hand in the cold water bath for a minimum of 30 seconds, at

which time they could remove their hand, if needed. After the

60 second cold water time period, a second bout of the same test

stimulus was conducted. CPM was computed as the absolute

difference in SHPR before and after the conditioning stimulus

[32]. Like SHPR, CPM is a dynamic measure of pain sensitivity

and indicative of central sensitivity. Moreover, CPM is a

behavioral correlate of endogenous pain inhibition [33]. Larger

differences (e.g., larger reductions in SHPR) were indicative of

greater degrees of pain modulation.

Data Analysis
We used IBM SPSS Statistics for Windows (version 21.0, SPSS,

Inc., Chicago, IL) for all data analyses. Alpha was set a priori at

the 0.05 level for statistical significance.

Descriptive statistics were computed for all pertinent baseline

and follow-up measures. To assess whether the exercise-induced

injury model induced changes in relevant factors, baseline and 48-

hour psychological variables (PCS, TSK-11) and pain sensitivity

(PPT, SHPR, CPM) comparisons were made using a paired

samples t-test.

The primary dependent variables (e.g., outcomes) for all

analyses were the exercise-induced 1) rest-related shoulder pain

(pain intensity with shoulder at rest); 2) shoulder pain with motion

(pain intensity during active shoulder abduction); and 3) isometric

shoulder pain (pain during isometric resisted external rotation of

the shoulder). The latter two dependent variables were considered

measures of activity-related pain. These variables were measured

at 48- and 96-hours after exercise-induced shoulder pain.

Zero-order correlation coefficients were computed for indepen-

dent variables (e.g., predictors) measured at baseline (pre-injury:

age, sex, BMI, PCS, TSK-11, PPT, SHPR, CPM) with dependent

variables at 48- and 96-hours, and independent variables

measured at 48-hours (post-injury: PCS, TSK-11, PPT, SHPR,

CPM) with dependent variables at 96-hours. All variables were

analyzed as continuous variables, except for sex which was a

dichotomous variable (0 for female, 1 for male). These correlations

coefficients express the simple relationship between each indepen-

dent and dependent variable.

Subsequently, we examined the unique relationship between

independent and dependent variables after controlling for other

variables, using hierarchical linear regression. Hierarchical linear

regression modeling allows us to account for other factors in an a-

priori, theoretical fashion. Separate hierarchical linear regression

models were created using 1) baseline, pre-injury independent

variables for each of the three dependent variables at 48- and 96-

hours and 2) baseline demographic (age, sex, BMI) and 48-hour,

post-injury independent variables (PCS, TSK-11, PPT, SHPR,

CPM) for each of the three dependent variables at 96-hours.

In each of the hierarchical linear regression models, demo-

graphic variables of age, sex, and BMI were entered into the first

block, psychological variables of PCS and TSK-11 were entered

into the second block, and pain sensitivity variables of PPT,

SHPR, and CPM were entered into the third and final block. In

the 96-hour prediction model, each respective independent

variable outcome measured at 48-hours was entered in the first

block. We built these models in this fashion to assess the unique

contribution of pain sensitivity factors after accounting for relevant

demographic and psychological variables.

Correlation values between independent variables were exam-

ined prior to entering into regression models in order to prevent

significant inter-correlation (i.e., multicollinearity). An a-priori

correlation of 0.7 or greater was used to reflect potential

multicollinearity [34]. Additional multicollinearity tests were

tolerance and variance inflation, which should be greater than.2

and less than 10, respectively [35]. All tests indicated a lack of

multicollinearity, and therefore, confirmed the stability of our

models. Overall model statistics were examined along with

changes in r-squared and p-value for each model step. Relative

individual predictor strength was assessed with b estimates.

Sample Size Determination
To determine the minimum acceptable sample size needed for

these analyses, we used estimation criteria from Green [36], as well

as the general rule of thumb of 10–15 cases per predictor, as

guidelines [35,37]. Since we were interested in assessing both the

overall fit of our regression modeling and testing individual

predictors (n = 8) we used the larger of the two sample sizes needed

from Green’s criteria. In this case, the minimum total sample size

needed was 114 participants and was approximate to the more

stringent rule of thumb criteria of 120 participants (e.g., 15 cases

per predictor with 8 predictors).

Results

Sample Characteristics
Descriptive data from 143 individuals who participated in this

study are presented in Table 1. All enrolled participants, except

for one (illness), completed study. Participants ranged in age from

18 to 58 years (mean age = 23.7 years, SD = 6.7 years) and the

59% were female (85 female, 58 male). Comparison of baseline

and 48-hour values for psychological variables and pain sensitivity

showed that exercise-induced shoulder pain resulted in signifi-

cantly lower PPT (higher local pain sensitivity) and PCS (lower

pain catastrophizing) values and higher TSK-11 values (higher

fear of movement) (p,0.05).

Association between Predictor and Outcome Variables
Table 2 lists correlation coefficients for each pre-injury and

post-injury variable and 48- and 96-hour pain outcome. For pain

sensitivity predictors, pre-injury SHPR was positively associated

with both measures of activity-related pain at 48- and 96-hours

(p,0.05), but not rest-related pain at these time points (p.0.05).

Furthermore, post-injury SHPR, along with post-injury PPT, was

associated with 96-hour activity-related pain (p,0.05). The

Prediction of Exercise-Induced Pain

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e108699



relationship of SHPR and PPT with pain outcome was such that

the more pain sensitive an individual was (e.g., higher SHPR or

lower PPT), the higher the report of shoulder pain.

Prediction of Rest- and Activity-Related Pain at 48 Hours
Table 3 includes results from the hierarchical regression models

predicting 48-hour rest-related shoulder pain and shoulder pain

with activity using pre-injury predictors. The final regression

model for 48-hour rest-related shoulder pain indicated that none

of the covariate variables were predictive of outcome

(F8,133 = 1.145, p = 0.338, r2 = 0.064). In contrast, the final

regression models for shoulder pain with motion (F8,132 = 2.360,

p,0.05) and isometric shoulder pain (F8,130 = 5.159, p,0.001)

demonstrated predictive ability explaining 12.5% and 24.1% of

the variance in pain outcome, respectively. In these models, pre-

injury SHPR (b= 0.285, p,0.05) was the strongest predictor of

48-hour shoulder pain with motion, even after accounting for

psychology (PCS: b= 0.209, p,0.05). In addition, pre-injury

SHPR (b= 0.472, P,0.05) was the sole predictor of 48-hour

isometric shoulder pain.

Prediction of Rest- and Activity-Related Pain at 96 Hours
Table 4 includes results from the hierarchical regression models

predicting 96-hour resting shoulder pain and shoulder pain with

activity using pre-injury predictors. The final regression model

predicting 96-hour rest-related shoulder pain was not statistically

significant, and therefore, was not predictive of outcome (F8,131

= 0.683, p = 0.706, r2 = 0.040). The final regression models for

shoulder pain with motion (F8,130 = 2.259, p = 0.027) and isometric

shoulder pain (F8,128 = 3.102, p = 0.003) demonstrated predictive

ability, explaining 12.2% and 16.2% of the variance in pain

outcome, respectively. Despite lack of significance, pre-injury

SHPR (b= 0.172, p = 0.067) was the strongest predictor of

96-hour shoulder pain with motion. Moreover, pre-injury SHPR

was a unique predictor (b= 0.387, p,0.001) of 96-hour isometric

shoulder pain.

Table 5 includes results from the hierarchical regression models

predicting 96-hour rest and activity-related pain using 48-hour

post-injury predictors. The final regression model for 96-hour rest-

related shoulder pain was predictive of outcome (F9,129 = 4.700,

p,0.001), explaining 24.7% of the variance. The final regression

models for shoulder pain with motion (F9,128 = 9.338, p,0.001)

and isometric shoulder pain (F9,126 = 13.266, p,0.001) were also

predictive, explaining 39.6% and 48.7% of the variance in pain

outcome, respectively. Pain outcome measured at 48-hours was

the strongest predictor across all models (i.e., rest pain at 48-hours

for rest pain at 96-hours, etc.), however, post-injury PPT (b=

20.164, p,0.05) and post-injury SHPR (b= 0.154, p,0.05) also

predicted 96-hour shoulder pain with motion. Furthermore, post-

injury SHPR (b= 0.164, p,0.05) was a predictor of 96-hour

isometric shoulder pain.

Discussion

We induced shoulder pain using an eccentric exercise protocol

and evaluated the influence of pre-injury and post-injury factors,

namely pain sensitivity, on rest and activity-related shoulder pain

measured at 48- and 96-hours. We did not observe consistent

predictors across both rest and activity-related pain. However,

SHPR, a pain sensitivity measure, was a consistent and oft-times

the sole predictor of activity-related pain. These findings suggest

that rest and activity-related pain may be modulated by different

underlying processes and mechanisms [10]. Specifically, the results

of our study indicate that activity-related pain is more likely to be

modulated by factors related to pain sensitivity. The relevance of

these findings for pain research and clinical practice is further

considered in subsequent sections.

Table 1. Baseline, 48-hour, and 96-hour Descriptive Data (N = 143).

Pre-injury Post-injury

Variable Baseline 48-hour 96-hour

Demographic

Age (years) 23.7 (6.7) - -

Sex (N of females) 85 - -

Dominant arm (N of right) 126 - -

BMI 23.5 (4.0)

Psychological

PCS 9.9 (7.9) 8.0 (8.0) -

TSK-11 18.0 (4.4) 18.8 (5.0) -

Pain Sensitivity

PPT (kg) 5.5 (2.0) 4.8 (1.8) -

SHPR (x/100) 23.2 (24.4) 20.9 (22.7) -

CPM (x/100) 28.6 (12.8) 27.8 (13.6) -

Shoulder Pain Intensity (x/100)

At Rest - 22.2 (20.5) 7.5 (10.1)

With Active Motion - 15.5 (16.4) 4.2 (7.4)

With Isometric Contraction - 20.6 (18.8) 10.5 (16.3)

Values are expressed as mean (SD) unless otherwise indicated.
Abbreviations: BMI = body mass index, CPM = conditioned pain modulation, N = number, PCS = Pain Catastrophizing Scale, PPT = pressure pain threshold,
SHPR = suprathreshold heat pain response, TSK-11 = Tampa Scale of Kinesiophobia.
doi:10.1371/journal.pone.0108699.t001
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Relevance to Pain Research
Exercise-induced injury paradigms like the one in our study

have been used to model the pain experience [5–

9,11,15,16,18,19,38–42]. In general, pre-injury psychological

factors have been shown to be predictive of post-injury resting

pain reports [7–9,18,19]. Pain sensitivity, however, predicted

activity-related pain, even after controlling for selected psycholog-

ical factors. These findings are consistent with results reported by

Rakel et al. [10] that examined pre-operative psychological and

pain sensitivity predictors of rest and activity-related pain following

total knee replacement. These authors found pre-operative pain

sensitivity measures (e.g., cutaneous mechanical and thermal

threshold) to be predictive of activity-related movement pain, but

not rest-related pain. Additionally, PPT had limited predictive

ability on either rest or activity-related pain [10], which is

concordant with our PPT findings.

Our study advances current evidence by including both static

(PPT) and dynamic (SHPR, CPM) pain sensitivity measures in

predicting pain. In doing so, we show that a dynamic measure of

pain sensitivity, SHPR, is an important predictor of clinical pain

outcome in a novel pain model (e.g., exercise-induced shoulder

injury model) and corroborates a previously published trial of

exercise-induced pain [6,7]. Bishop et al [6] examined the

influence of static and dynamic thermal pain sensitivity on

exercise-induced low back pain and reported a significant

association between dynamic thermal pain sensitivity (e.g.,

temporal summation of pain) and daily muscle pain intensity.

While the authors did not specifically examine activity-related

pain, measures of daily muscle pain intensity may include

appraisals of activity-related pain within their metric, especially

if activity-related pain coincides with moments of worst pain

during the day. This may explain why we found no association

between pain sensitivity and resting pain intensity, because resting

pain only assesses current pain when no movement is occurring at

the shoulder.

The lack of consistent predictors across rest and activity-related

pain aligns with current models on the pain experience or pain

perception [43,44]. Pain sensation appraisal is context-dependent

and involves influence from cognitive, sensory and affective

components, and is likely processed in serial, parallel, and cyclical

fashion. Conceptually, individuals may appraise pain differently

when at rest and during activity [45,46], and possible explanations

include the following mechanisms. First, rating pain during a

controlled activity (i.e., lifting arm in controlled fashion like in our

study), may not be as threatening as pain during either

unpredictable or uncontrollable moments (e.g., daily events or at

rest when not anticipating pain). Second, evoked pain may be seen

as a challenge to the sensory system and result in activity-

dependent responses. Thus, pain sensitivity may be suited to reflect

these underlying activity-dependent states more so than during

basal states such as rest.

Relevance to Clinical Practice
While our findings are consistent with findings across pre-

clinical (i.e., healthy participant) and postoperative studies

[6,7,10,47–49], we used an exercise-induced injury model which

is advantageous for the assessment of pre-injury influence. We are

unaware of studies that assessed the association between pain

sensitivity and the transition of pre-injury to post-injury states and

this was one of our primary aims [47,48]. Measuring pre-injury

states is difficult to conduct in clinical studies where the future

development of pain is uncertain. While our findings are

Table 2. Correlation of Pre-Injury and Post-Injury Predictors with Shoulder Pain Outcome at 48 and 96-Hours.

48-Hours 96-Hours

Activity-Related Pain Activity-Related Pain

Variable Rest-Related Pain Motion Pain Isometric Pain Rest-Related Pain Motion Pain Isometric Pain

Pre-injury

Age 20.014 0.011 20.053 20.123 20.084 20.096

Sex 20.171* 0.066 20.039 20.066 0.050 0.040

BMI 20.051 0.033 20.062 20.020 0.042 0.005

PCS 0.096 0.125 0.128 0.175* 0.179* 0.145

TSK-11 20.015 20.044 20.003 0.073 0.073 0.091

PPT 20.131 20.076 20.162* 20.048 20.051 20.079

SHPR 0.045 0.251* 0.437* 0.073 0.222* 0.320*

CPM 0.091 20.051 20.118 20.056 20.197* 20.039

Post-Injury

48 Pain - - - 0.423* 0.568* 0.670*

PCS - - - 0.253* 0.176* 0.095

TSK-11 - - - 0.139 0.201* 0.050

PPT - - - 20.129 20.233* 20.203*

SHPR - - - 0.162* 0.286* 0.418*

CPM - - - 20.023 20.087 0.017

*p-value,0.05.
Values are correlation coefficients.
Abbreviations: BMI = body mass index, CPM = conditioned pain modulation, PCS = Pain Catastrophizing Scale, PPT = pressure pain threshold, SHPR = suprathreshold heat
pain response, TSK = Tampa Scale of Kinesiophobia.
doi:10.1371/journal.pone.0108699.t002

Prediction of Exercise-Induced Pain

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e108699



T
a

b
le

3
.

H
ie

ra
rc

h
ic

al
R

e
g

re
ss

io
n

M
o

d
e

ls
P

re
d

ic
ti

n
g

4
8

-h
o

u
r

Sh
o

u
ld

e
r

P
ai

n
at

R
e

st
,

w
it

h
M

o
ti

o
n

,
an

d
w

it
h

Is
o

m
e

tr
ic

A
ct

io
n

U
si

n
g

B
as

e
lin

e
,

P
re

-i
n

ju
ry

P
re

d
ic

to
rs

.

A
ct

iv
it

y
-R

e
la

te
d

P
a

in

R
e

st
-R

e
la

te
d

P
a

in
M

o
ti

o
n

P
a

in
Is

o
m

e
tr

ic
P

a
in

B
e

ta
P

D
R

2
P

B
e

ta
P

D
R

2
P

B
e

ta
P

D
R

2
P

1
0

.0
2

7
0

.2
8

1
0

.0
0

6
0

.8
5

0
0

.0
0

5
0

.8
8

9

A
g

e
0

.0
2

5
0

.7
8

5
,

0
.0

0
1

0
.9

9
6

2
0

.0
2

7
0

.7
7

1

Se
x

2
0

.1
6

3
0

.0
6

5
0

.0
7

1
0

.4
2

3
2

0
.0

1
1

0
.9

0
2

B
M

I
2

0
.0

1
6

0
.8

6
7

0
.0

1
3

0
.8

9
0

2
0

.0
4

9
0

.6
0

5

2
0

.0
2

0
0

.2
4

9
0

.0
4

3
0

.2
3

2
0

.0
2

9
0

.4
6

1

A
g

e
0

.0
6

1
0

.5
1

2
0

.0
5

4
0

.5
6

4
0

.0
1

3
0

.8
9

3

Se
x

2
0

.1
5

7
0

.0
7

6
0

.0
7

9
0

.3
6

7
2

0
.0

0
5

0
.9

5
5

B
M

I
2

0
.0

2
1

0
.8

1
9

0
.0

0
4

0
.9

6
8

2
0

.0
5

3
0

.5
7

7

P
C

S
0

.1
7

0
0

.0
9

5
0

.2
4

7
0

.0
1

5
0

.2
0

2
0

.0
4

8

T
SK

-1
1

2
0

.0
9

9
0

.3
2

3
2

0
.1

4
9

0
.1

3
5

2
0

.0
8

8
0

.3
8

2

3
0

.0
1

7
0

.3
3

8
0

.0
7

6
0

.0
2

1
0

.2
0

7
,

0
.0

0
1

A
g

e
0

.0
7

1
0

.4
4

9
0

.0
5

4
0

.5
5

2
0

.0
1

1
0

.8
9

9

Se
x

2
0

.1
3

7
0

.1
4

0
0

.1
0

7
0

.2
3

2
0

.0
4

0
0

.6
3

2

B
M

I
0

.0
1

7
0

.8
5

5
0

.0
5

1
0

.5
7

9
0

.0
2

3
0

.7
8

9

P
C

S
0

.1
7

0
0

.1
0

0
0

.2
0

9
0

.0
3

6
0

.1
3

3
0

.1
4

9

T
SK

-1
1

2
0

.0
7

4
0

.4
6

6
2

0
.1

4
4

0
.1

4
2

2
0

.0
8

0
0

.3
7

8

P
P

T
2

0
.0

5
7

0
.5

3
3

2
0

.0
6

1
0

.4
9

4
2

0
.0

8
4

0
.3

1
1

SH
P

R
0

.0
8

3
0

.3
8

4
0

.2
8

5
0

.0
0

2
0

.4
7

2
,

0
.0

0
1

C
P

M
0

.1
2

8
0

.1
8

6
0

.0
4

1
0

.6
6

5
0

.0
5

6
0

.5
2

7

A
ll

p
re

d
ic

to
r

va
ri

ab
le

s
m

e
as

u
re

d
at

b
as

e
lin

e
(p

re
-i

n
ju

ry
).

A
b

b
re

vi
at

io
n

s:
B

M
I=

b
o

d
y

m
as

s
in

d
e

x,
C

P
M

=
co

n
d

it
io

n
e

d
p

ai
n

m
o

d
u

la
ti

o
n

,
P

C
S

=
P

ai
n

C
at

as
tr

o
p

h
iz

in
g

Sc
al

e
,

P
=

p
-v

al
u

e
,

P
P

T
=

p
re

ss
u

re
p

ai
n

th
re

sh
o

ld
,

SH
P

R
=

su
p

ra
th

re
sh

o
ld

h
e

at
p

ai
n

re
sp

o
n

se
,

T
SK

=
T

am
p

a
Sc

al
e

o
f

K
in

e
si

o
p

h
o

b
ia

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
8

6
9

9
.t

0
0

3

Prediction of Exercise-Induced Pain

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e108699



T
a

b
le

4
.

H
ie

ra
rc

h
ic

al
R

e
g

re
ss

io
n

M
o

d
e

ls
P

re
d

ic
ti

n
g

9
6

-h
o

u
r

Sh
o

u
ld

e
r

P
ai

n
at

R
e

st
,

w
it

h
M

o
ti

o
n

,
an

d
w

it
h

Is
o

m
e

tr
ic

A
ct

io
n

U
si

n
g

B
as

e
lin

e
,

P
re

-I
n

ju
ry

P
re

d
ic

to
rs

.

A
ct

iv
it

y
-R

e
la

te
d

P
a

in

R
e

st
-R

e
la

te
d

P
a

in
M

o
ti

o
n

P
a

in
Is

o
m

e
tr

ic
P

a
in

B
e

ta
P

D
R

2
P

B
e

ta
P

D
R

2
P

B
e

ta
P

D
R

2
P

1
0

.0
2

2
0

.3
7

9
0

.0
1

6
0

.5
4

1
0

.0
1

4
0

.6
0

7

A
g

e
2

0
.1

3
8

0
.1

3
4

2
0

.1
1

9
0

.2
0

1
2

0
.1

1
6

0
.2

1
5

Se
x

2
0

.0
6

8
0

.4
4

6
0

.0
6

0
0

.5
0

6
0

.0
6

1
0

.5
0

1

B
M

I
0

.0
5

0
0

.5
9

2
0

.0
7

0
0

.4
6

3
0

.0
3

1
0

.7
4

6

2
0

.0
1

6
0

.3
7

9
0

.0
3

6
0

.2
0

5
0

.0
2

5
0

.3
9

3

A
g

e
2

0
.1

1
1

0
.2

4
0

2
0

.0
7

1
0

.4
5

5
2

0
.0

8
4

0
.3

8
2

Se
x

2
0

.0
5

8
0

.5
1

2
0

.0
7

0
0

.4
3

0
0

.0
6

8
0

.4
5

2

B
M

I
0

.0
5

2
0

.5
8

0
0

.0
7

2
0

.4
4

5
0

.0
3

7
0

.6
9

9

P
C

S
0

.1
3

9
0

.1
7

9
0

.2
0

4
0

.0
4

8
0

.1
3

9
0

.1
7

9

T
SK

-1
1

2
0

.0
1

8
0

.8
5

9
2

0
.0

1
2

0
.9

0
0

0
.0

3
8

0
.7

0
2

3
0

.0
0

2
0

.7
0

6
0

.0
7

0
0

.0
2

7
0

.1
2

4
0

.0
0

3

A
g

e
2

0
.1

1
1

0
.2

4
9

2
0

.0
8

7
0

.3
4

8
2

0
.0

9
2

0
.3

1
2

Se
x

2
0

.0
4

9
0

.6
0

1
0

.0
9

4
0

.3
0

3
0

.1
0

2
0

.2
5

7

B
M

I
0

.0
5

9
0

.5
4

1
0

.1
2

1
0

.1
9

3
0

.0
8

8
0

.3
4

0

P
C

S
0

.1
3

4
0

.2
0

3
0

.1
6

6
0

.1
0

0
0

.1
0

0
0

.3
1

1

T
SK

-1
1

2
0

.0
1

6
0

.8
7

6
2

0
.0

3
9

0
.6

9
4

0
.0

5
4

0
.5

7
3

P
P

T
2

0
.0

2
4

0
.7

9
4

2
0

.0
4

6
0

.6
0

4
2

0
.0

4
0

0
.6

5
2

SH
P

R
0

.0
3

3
0

.7
3

6
0

.1
7

2
0

.0
6

7
0

.3
8

7
,

0
.0

0
1

C
P

M
0

.0
0

5
0

.9
6

0
2

0
.1

4
5

0
.1

2
3

0
.1

2
7

0
.1

7
2

A
ll

p
re

d
ic

to
r

va
ri

ab
le

s
m

e
as

u
re

d
at

b
as

e
lin

e
(p

re
-i

n
ju

ry
).

A
b

b
re

vi
at

io
n

s:
B

M
I=

b
o

d
y

m
as

s
in

d
e

x,
C

P
M

=
co

n
d

it
io

n
e

d
p

ai
n

m
o

d
u

la
ti

o
n

,
P

C
S

=
P

ai
n

C
at

as
tr

o
p

h
iz

in
g

Sc
al

e
,

P
=

p
-v

al
u

e
,

P
P

T
=

p
re

ss
u

re
p

ai
n

th
re

sh
o

ld
,

SH
P

R
=

su
p

ra
th

re
sh

o
ld

h
e

at
p

ai
n

re
sp

o
n

se
,

T
SK

=
T

am
p

a
Sc

al
e

o
f

K
in

e
si

o
p

h
o

b
ia

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
8

6
9

9
.t

0
0

4

Prediction of Exercise-Induced Pain

PLOS ONE | www.plosone.org 7 September 2014 | Volume 9 | Issue 9 | e108699



T
a

b
le

5
.

H
ie

ra
rc

h
ic

al
R

e
g

re
ss

io
n

M
o

d
e

ls
P

re
d

ic
ti

n
g

9
6

-h
o

u
r

Sh
o

u
ld

e
r

P
ai

n
at

R
e

st
,

w
it

h
M

o
ti

o
n

,
an

d
w

it
h

Is
o

m
e

tr
ic

A
ct

io
n

u
si

n
g

4
8

-H
o

u
r,

P
o

st
-I

n
ju

ry
P

re
d

ic
to

rs
.

A
ct

iv
it

y
-R

e
la

te
d

P
a

in

R
e

st
-R

e
la

te
d

P
a

in
M

o
ti

o
n

P
a

in
Is

o
m

e
tr

ic
P

a
in

B
e

ta
P

D
R

2
P

B
e

ta
P

D
R

2
P

B
e

ta
P

D
R

2
P

1
0

.2
1

6
,

0
.0

0
1

0
.3

3
4

,
0

.0
0

1
0

.4
5

8
,

0
.0

0
1

A
g

e
2

0
.1

4
9

0
.0

7
4

2
0

.1
1

1
0

.1
5

0
2

0
.0

7
5

0
.2

8
4

Se
x

0
.0

0
1

0
.9

8
6

0
.0

4
0

0
.5

9
6

0
.0

7
1

0
.2

9
5

B
M

I
0

.0
5

5
0

.5
2

0
0

.0
6

7
0

.3
9

5
0

.0
6

3
0

.3
7

9

4
8

P
ai

n
0

.4
4

5
,

0
.0

0
1

0
.5

6
3

,
0

.0
0

1
0

.6
6

9
,

0
.0

0
1

2
0

.0
1

8
,

0
.0

0
1

0
.0

1
1

,
0

.0
0

1
0

.0
0

1
,

0
.0

0
1

A
g

e
2

0
.1

2
9

0
.1

2
3

2
0

.1
0

3
0

.1
9

0
2

0
.0

7
4

0
.3

0
0

Se
x

0
.0

0
9

0
.9

1
3

0
.0

3
6

0
.6

2
9

0
.0

7
3

0
.2

8
7

B
M

I
0

.0
4

3
0

.6
1

4
0

.0
7

5
0

.3
4

1
0

.0
5

9
0

.4
1

2

4
8

P
ai

n
0

.4
1

0
,

0
.0

0
1

0
.5

6
6

,
0

.0
0

1
0

.6
6

7
,

0
.0

0
1

P
C

S
0

.1
4

8
0

.1
2

2
2

0
.0

6
2

0
.4

8
2

0
.0

3
2

0
.6

8
4

T
SK

-1
1

2
0

.0
1

6
0

.8
6

6
0

.1
2

5
0

.1
4

8
2

0
.0

3
4

0
.6

6
5

3
0

.0
1

3
,

0
.0

0
1

0
.0

5
2

,
0

.0
0

1
0

.0
2

7
,

0
.0

0
1

A
g

e
2

0
.1

2
9

0
.1

3
0

2
0

.1
0

6
0

.1
7

2
2

0
.0

8
6

0
.2

3
2

Se
x

0
.0

2
2

0
.7

9
1

0
.1

0
0

0
.1

8
8

0
.0

8
4

0
.2

3
4

B
M

I
0

.0
5

1
0

.5
5

3
0

.1
1

3
0

.1
5

0
0

.0
6

0
0

.4
0

4

4
8

P
ai

n
0

.3
9

8
,

0
.0

0
1

0
.4

9
7

,
0

.0
0

1
0

.5
9

4
,

0
.0

0
1

P
C

S
0

.1
4

6
0

.1
3

0
2

0
.0

7
0

0
.4

2
1

0
.0

3
7

0
.6

3
8

T
SK

-1
1

2
0

.0
1

0
0

.9
1

3
0

.1
3

5
0

.1
1

0
2

0
.0

3
1

0
.6

8
9

P
P

T
2

0
.0

3
9

0
.6

4
2

2
0

.1
6

4
0

.0
3

2
2

0
.0

1
1

0
.8

7
4

SH
P

R
0

.1
0

1
0

.2
1

3
0

.1
5

4
0

.0
4

1
0

.1
6

4
0

.0
3

5

C
P

M
0

.0
5

4
0

.4
9

9
,

0
.0

0
1

0
.9

9
6

0
.1

1
4

0
.0

8
7

A
ll

p
re

d
ic

to
r

va
ri

ab
le

s
e

xc
e

p
t

ag
e

,
se

x,
an

d
B

M
I

m
e

as
u

re
d

at
4

8
h

o
u

rs
(p

o
st

-i
n

ju
ry

).
A

b
b

re
vi

at
io

n
s:

4
8

P
ai

n
=

P
ai

n
re

p
o

rt
o

f
e

ac
h

re
sp

e
ct

iv
e

o
u

tc
o

m
e

va
ri

ab
le

at
4

8
h

o
u

rs
,

B
M

I=
b

o
d

y
m

as
s

in
d

e
x,

C
P

M
=

co
n

d
it

io
n

e
d

p
ai

n
m

o
d

u
la

ti
o

n
,

P
C

S
=

P
ai

n
C

at
as

tr
o

p
h

iz
in

g
Sc

al
e

,
P

=
p

-v
al

u
e

,
P

P
T

=
p

re
ss

u
re

p
ai

n
th

re
sh

o
ld

,
SH

P
R

=
su

p
ra

th
re

sh
o

ld
h

e
at

p
ai

n
re

sp
o

n
se

,
T

SK
=

T
am

p
a

Sc
al

e
o

f
K

in
e

si
o

p
h

o
b

ia
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

8
6

9
9

.t
0

0
5

Prediction of Exercise-Induced Pain

PLOS ONE | www.plosone.org 8 September 2014 | Volume 9 | Issue 9 | e108699



preliminary, our results suggest that early indication of individuals

at risk for persistent activity-related pain may be identified by pre-

injury pain sensitivity. This has potential implications for clinical

management or screening as pain sensitivity assessment may be an

additional tool to predict individuals at risk for chronic pain [47].

Recommendations such as these have been made in populations

including postoperative pain [50,51] and there are ongoing efforts

for the identification of pain sensitivity profiles or phenotypes for

improved pain management [52]. If our findings are replicated in

patients with musculoskeletal pain, then current recommendations

may be extended to suggest phenotypes of pain-free individuals at

risk of activity-evoked pain after musculoskeletal injury.

In a well-conducted meta-analysis, Hubscher et al [53] reported

a weak association between pain sensitivity responses and clinical

pain intensity. Rather than reflect poor clinical validity of pain

sensitivity, the apparent weak association with pain sensitivity and

clinical pain potentially may suggest a more complex relationship

between measures of pain sensitivity and clinical outcome. Pain

sensitivity, in general, may in fact be weakly associated to resting

pain ratings, but may show stronger associations when evoked

pain (as occurs during movement) is considered the clinical

outcome of interest. Not apparent in the review by Hubscher et al

[53] is whether a distinction between rest and activity-related pain

was made when assessing outcome. But, perhaps in future clinical

studies the utility of pain sensitivity will not be in predicting rest-

related pain, but in activity-related pain.

Furthermore, select pain sensitivity responses may yield better

association or prediction than others. Hubscher et al [53] reported

relatively stronger correlations between clinical pain intensity and

dynamic pain sensitivity (e.g., temporal summation), as compared

to static pain sensitivity. This is consistent with our current findings

where SHPR showed stronger relative prediction than PPT.

Interestingly, we did not find CPM to be predictive of activity-

related pain and that may be because our exercise-induced injury

model is a model of acute pain. Evidence suggests that a lack of

inhibitory mechanisms, as inferred through CPM, is more often

shown in chronic pain syndromes [54,55], so these results may be

expected and future studies in clinical populations should continue

to use CPM until this issue is explored further.

Study Limitations
This study has several limitations. First, we standardized the

initial bout of exercise for injury induction, but allowed continued

exercise performance if our fatigue criterion was not met. Thus,

we did not include the dosage of exercise to induce injury into our

models for those individuals requiring a larger volume to induce

the same injury criterion. Second, our study results can only be

generalized to a population of younger, healthy individuals with

induced shoulder pain following eccentric exercise. Although

similar results have been observed in experimental and clinical

trials [6,7,10], further validation of these findings to older and

clinical populations is warranted. Third, our results are limited to

those predictive factors included in our models. Other known

predictors of resting pain such as depression were not included in

these analyses. Furthermore, we did not include interaction terms

within our model as we did not have specific hypotheses for

interactions. Our models assessed only the main effects from each

of the included predictors.

Additionally, we included only select measures of pressure and

heat pain sensitivity and no other modalities. Currently, there is no

consensus for pain sensitivity assessment, however multiple

modality testing is encouraged and we included both static and

dynamic pain sensitivity [13]. We did not include assessments of

pain beyond 96-hours post-injury, but it is common for resolution

of pain to occur for most individuals within this timeframe. Our

pain outcome assessment was limited to pain intensity as

compared to unpleasantness or other pain dimension measures.

We did find some discrepancy in pain outcome between our study

and the study by Dannecker and Sluka [5] where our activity-

related pain measures did not elicit higher pain ratings than pain

at rest. This may be due to the lack of specificity in our activity. In

other words, we did not selectively stress the musculoskeletal tissue

that was fatigued as was done by Dannecker and Sluka [5].

Further studies should assess whether induced shoulder pain can

elicit higher pain ratings with selective movements as opposed to a

general active or resisted motion.

Conclusion
Our prediction models within an exercise-induced injury

paradigm allowed us to assess whether pain sensitivity was related

to pain outcome as a risk (pre-injury) factor or prognostic (post-

injury) factor. Based on our findings, pain sensitivity and SHPR

specifically is associated with activity-related pain, however further

investigations are needed to validate these findings and their

potential translation into clinical practice.

Supporting Information

Data S1 (XLSX)

Acknowledgments

We wish to acknowledge Dr. Kelly Larkin Kaiser for assisting with data

collection.

Author Contributions

Conceived and designed the experiments: PAB SZG. Performed the

experiments: RAC CBS CV JJP SZG. Analyzed the data: RAC SZG.

Wrote the paper: RAC CBS CV JJP PAB SZG.

References

1. Litcher-Kelly L, Martino SA, Broderick JE, Stone AA (2007) A systematic

review of measures used to assess chronic musculoskeletal pain in clinical and

randomized controlled clinical trials. J Pain 8: 906–913.

2. Srikandarajah S, Gilron I (2011) Systematic review of movement-evoked pain

versus pain at rest in postsurgical clinical trials and meta-analyses: a fundamental

distinction requiring standardized measurement. Pain 152: 1734–1739.

3. Kehlet H, Dahl JB (2011) Assessment of postoperative pain–need for action!

Pain 152: 1699–1700.

4. Wu CL, Rowlingson AJ, Partin AW, Kalish MA, Courpas GE, et al. (2005)

Correlation of postoperative pain to quality of recovery in the immediate

postoperative period. Reg Anesth Pain Med 30: 516–522.

5. Dannecker EA, Sluka KA (2011) Pressure and activity-related allodynia in

delayed-onset muscle pain. Clin J Pain 27: 42–47.

6. Bishop MD, George SZ, Robinson ME (2012) Dynamic, but not static, pain

sensitivity predicts exercise-induced muscle pain: covariation of temporal sensory

summation and pain intensity. Neurosci Lett 526: 1–4.

7. Bishop MD, Horn ME, George SZ (2011) Exercise-induced pain intensity

predicted by pre-exercise fear of pain and pain sensitivity. Clin J Pain 27: 398–

404.

8. George SZ, Dover GC, Fillingim RB (2007) Fear of pain influences outcomes

after exercise-induced delayed onset muscle soreness at the shoulder. Clin J Pain

23: 76–84.

9. George SZ, Dover GC, Wallace MR, Sack BK, Herbstman DM, et al. (2008)

Biopsychosocial influence on exercise-induced delayed onset muscle soreness at

the shoulder: pain catastrophizing and catechol-o-methyltransferase (COMT)

diplotype predict pain ratings. Clin J Pain 24: 793–801.

Prediction of Exercise-Induced Pain

PLOS ONE | www.plosone.org 9 September 2014 | Volume 9 | Issue 9 | e108699



10. Rakel BA, Blodgett NP, Bridget Zimmerman M, Logsden-Sackett N, Clark C,

et al. (2012) Predictors of postoperative movement and resting pain following
total knee replacement. Pain 153: 2192–2203.

11. Ayles S, Graven-Nielsen T, Gibson W (2011) Vibration-induced afferent activity

augments delayed onset muscle allodynia. J Pain 12: 884–891.
12. Cruz-Almeida Y, Fillingim RB (2014) Can quantitative sensory testing move us

closer to mechanism-based pain management? Pain Med 15: 61–72.
13. Backonja MM, Attal N, Baron R, Bouhassira D, Drangholt M, et al. (2013)

Value of quantitative sensory testing in neurological and pain disorders:

NeuPSIG consensus. Pain 154: 1807–1819.
14. Henriksen M, Alkjaer T, Lund H, Simonsen EB, Graven-Nielsen T, et al. (2007)

Experimental quadriceps muscle pain impairs knee joint control during walking.
J Appl Physiol (1985) 103: 132–139.

15. Bishop MD, Horn ME, George SZ, Robinson ME (2011) Self-reported pain and
disability outcomes from an endogenous model of muscular back pain. BMC

Musculoskelet Disord 12: 35.

16. Slater H, Arendt-Nielsen L, Wright A, Graven-Nielsen T (2003) Experimental
deep tissue pain in wrist extensors–a model of lateral epicondylalgia. Eur J Pain

7: 277–288.
17. Price DD, McGrath PA, Rafii A, Buckingham B (1983) The validation of visual

analogue scales as ratio scale measures for chronic and experimental pain. Pain

17: 45–56.
18. Parr J, Borsa P, Fillingim R, Kaiser K, Tillman MD, et al. (2014) Psychological

influences predict recovery following exercise induced shoulder pain. Int J Sports
Med 35: 232–237.

19. Parr JJ, Borsa PA, Fillingim RB, Tillman MD, Manini TM, et al. (2012) Pain-
related fear and catastrophizing predict pain intensity and disability indepen-

dently using an induced muscle injury model. J Pain 13: 370–378.

20. Sullivan MJL, Bishop SR, Pivik J (1995) The Pain Catastrophizing Scale:
Development and validation. Psychological Assessment 7: 524–532.

21. Mintken PE, Cleland JA, Whitman JM, George SZ (2010) Psychometric
properties of the Fear-Avoidance Beliefs Questionnaire and Tampa Scale of

Kinesiophobia in patients with shoulder pain. Arch Phys Med Rehabil 91: 1128–

1136.
22. Lentz TA, Barabas JA, Day T, Bishop MD, George SZ (2009) The relationship

of pain intensity, physical impairment, and pain-related fear to function in
patients with shoulder pathology. J Orthop Sports Phys Ther 39: 270–277.

23. Woby SR, Roach NK, Urmston M, Watson PJ (2005) Psychometric properties
of the TSK-11: a shortened version of the Tampa Scale for Kinesiophobia. Pain

117: 137–144.

24. Arendt-Nielsen L, Yarnitsky D (2009) Experimental and clinical applications of
quantitative sensory testing applied to skin, muscles and viscera. J Pain 10: 556–

572.
25. Coronado RA, Kindler LL, Valencia C, George SZ (2011) Thermal and

pressure pain sensitivity in patients with unilateral shoulder pain: comparison of

involved and uninvolved sides. J Orthop Sports Phys Ther 41: 165–173.
26. Coronado RA, Simon CB, Valencia C, George SZ (2014) Experimental pain

responses support peripheral and central sensitization in patients with unilateral
shoulder pain. Clin J Pain 30: 143–151.

27. Chesterton LS, Sim J, Wright CC, Foster NE (2007) Interrater reliability of
algometry in measuring pressure pain thresholds in healthy humans, using

multiple raters. Clin J Pain 23: 760–766.

28. Persson AL, Brogardh C, Sjolund BH (2004) Tender or not tender: test-retest
repeatability of pressure pain thresholds in the trapezius and deltoid muscles of

healthy women. J Rehabil Med 36: 17–27.
29. Price DD, Mao J, Frenk H, Mayer DJ (1994) The N-methyl-D-aspartate

receptor antagonist dextromethorphan selectively reduces temporal summation

of second pain in man. Pain 59: 165–174.
30. Valencia C, Fillingim RB, George SZ (2011) Suprathreshold heat pain response

is associated with clinical pain intensity for patients with shoulder pain. J Pain
12: 133–140.

31. Valencia C, Kindler LL, Fillingim RB, George SZ (2012) Investigation of central

pain processing in shoulder pain: converging results from 2 musculoskeletal pain
models. J Pain 13: 81–89.

32. Valencia C, Kindler LL, Fillingim RB, George SZ (2013) Stability of

conditioned pain modulation in two musculoskeletal pain models: investigating
the influence of shoulder pain intensity and gender. BMC Musculoskelet Disord

14: 182.

33. Kong JT, Schnyer RN, Johnson KA, Mackey S (2013) Understanding central
mechanisms of acupuncture analgesia using dynamic quantitative sensory

testing: a review. Evid Based Complement Alternat Med 2013: 187182.

34. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, et al. (2013) Collinearity:

a review of methods to deal with it and a simulation study evaluating their
performance. Ecography 36: 27–46.

35. Field AP (2009) Discovering statistics using SPSS. Los Angeles: SAGE

Publications. xxxii, 821 p. p.

36. Green SB (1991) How Many Subjects Does It Take to Do a Regression-Analysis.

Multivariate Behavioral Research 26: 499–510.

37. Babyak MA (2004) What you see may not be what you get: a brief, nontechnical

introduction to overfitting in regression-type models. Psychosom Med 66: 411–
421.

38. Dannecker EA, Hausenblas HA, Kaminski TW, Robinson ME (2005) Sex

differences in delayed onset muscle pain. Clin J Pain 21: 120–126.

39. Dannecker EA, Koltyn KF, Riley JL 3rd, Robinson ME (2003) Sex differences

in delayed onset muscle soreness. J Sports Med Phys Fitness 43: 78–84.

40. Frey Law LA, Evans S, Knudtson J, Nus S, Scholl K, et al. (2008) Massage

reduces pain perception and hyperalgesia in experimental muscle pain: a

randomized, controlled trial. J Pain 9: 714–721.

41. Slater H, Arendt-Nielsen L, Wright A, Graven-Nielsen T (2005) Sensory and

motor effects of experimental muscle pain in patients with lateral epicondylalgia
and controls with delayed onset muscle soreness. Pain 114: 118–130.

42. Torisu T, Wang K, Svensson P, De Laat A, Tanaka M, et al. (2010) Effects of
eccentric jaw exercise on temporal summation in jaw-closing muscles of healthy

subjects. Eur J Pain 14: 719–724.

43. Price DD (2002) Central neural mechanisms that interrelate sensory and
affective dimensions of pain. Mol Interv 2: 392–403, 339.

44. Melzack R, Katz J (2013) Pain. Wiley Interdisciplinary Reviews-Cognitive
Science 4: 1–15.

45. Parks EL, Geha PY, Baliki MN, Katz J, Schnitzer TJ, et al. (2011) Brain activity
for chronic knee osteoarthritis: dissociating evoked pain from spontaneous pain.

Eur J Pain 15: 843 e841–814.

46. Trost Z (2012) All pain is not created equal: differentiating between pain during
movement versus pain at rest following total knee arthroplasty. Pain 153: 2161–

2162.

47. Yarnitsky D, Crispel Y, Eisenberg E, Granovsky Y, Ben-Nun A, et al. (2008)

Prediction of chronic post-operative pain: pre-operative DNIC testing identifies

patients at risk. Pain 138: 22–28.

48. Valencia C, Fillingim RB, Bishop M, Wu SS, Wright TW, et al. (2013)

Investigation of Central Pain Processing in Post-Operative Shoulder Pain and
Disability. Clin J Pain.

49. Granot M, Weissman-Fogel I (2012) The effect of post-surgical neuroplasticity
on the stability of systemic pain perception: a psychophysical study. Eur J Pain

16: 247–255.

50. Landau R, Kraft JC, Flint LY, Carvalho B, Richebe P, et al. (2010) An
experimental paradigm for the prediction of Post-Operative Pain (PPOP). J Vis

Exp.

51. Granot M (2009) Can we predict persistent postoperative pain by testing

preoperative experimental pain? Curr Opin Anaesthesiol 22: 425–430.

52. Yarnitsky D, Granot M, Granovsky Y (2014) Pain modulation profile and pain

therapy: between pro- and antinociception. Pain 155: 663–665.

53. Hubscher M, Moloney N, Leaver A, Rebbeck T, McAuley JH, et al. (2013)
Relationship between quantitative sensory testing and pain or disability in people

with spinal pain-a systematic review and meta-analysis. Pain 154: 1497–1504.

54. Lautenbacher S, Rollman GB (1997) Possible deficiencies of pain modulation in

fibromyalgia. Clin J Pain 13: 189–196.

55. Pielsticker A, Haag G, Zaudig M, Lautenbacher S (2005) Impairment of pain

inhibition in chronic tension-type headache. Pain 118: 215–223.

Prediction of Exercise-Induced Pain

PLOS ONE | www.plosone.org 10 September 2014 | Volume 9 | Issue 9 | e108699


